

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

ICC-ES Evaluation Report ESR-4868

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-HY 200 V3 ADHESIVE ANCHORS AND POST INSTALLED REINFORCING BAR CONNECTIONS IN CONCRETE

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2021, 2018, 2015, and 2012 International Building Code® (IBC)
- 2021, 2018, 2015, and 2012 International Residential Code® (IRC)

For evaluation for compliance with codes adopted by the Los Angeles Department of Building and Safety (LADBS), see ESR-4868 LABC and LARC Supplement.

Property evaluated:

Structural

2.0 USES

Adhesive anchors and reinforcing bars installed using the Hilti HIT-HY 200 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are used to resist static, wind and earthquake (Seismic Design Categories A through F) tension and shear loads in cracked and uncracked normal-weight or lightweight concrete having a specified compressive strength, f'_c , of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

The anchor system complies with anchors as described in Section 1901.3 of the 2021, 2018 and 2015 IBC, and Section 1909 of the 2012 IBC and is an alternative to castin-place anchors described in Section 1908 of the 2012 IBC. The anchor systems may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

Reissued November 2022

This report is subject to renewal November 2024.

The post-installed reinforcing bar system is an alternative to cast-in-place reinforcing bars governed by ACI 318 and IBC Chapter 19.

3.0 DESCRIPTION

3.1 General:

The Hilti HIT-HY 200 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are comprised of the following components:

- Hilti HIT-HY 200 V3 adhesive packaged in foil packs (either Hilti HIT-HY 200-A V3 or Hilti HIT-HY 200-R V3)
- Adhesive mixing and dispensing equipment
- Equipment for hole cleaning and adhesive injection

The Hilti HIT-HY 200 V3 Adhesive Anchoring System may be used with continuously threaded rod, Hilti HIT-Z(-R) anchor rods, Hilti HIS-(R)N internally threaded inserts or deformed steel reinforcing bars as depicted in Figure 1. The Hilti HIT-HY 200 V3 Post-Installed Reinforcing Bar System may only be used with deformed steel reinforcing bars as depicted in Figure 2. The primary components of the Hilti Adhesive Anchoring and Post-Installed Reinforcing Bar Systems, including the Hilti HIT-HY 200 V3 Adhesive, HIT-RE-M static mixing nozzle and steel anchoring elements, are shown in Figure 5 of this report.

The manufacturer's printed Installation instructions (MPII), as included with each adhesive unit package, are replicated as Figure 6.

3.2 Materials:

3.2.1 Hilti HIT-HY 200 V3 Adhesive: Hilti HIT-HY 200 V3 Adhesive is an injectable, two-component hybrid adhesive. The two components are separated by means of a dual-cylinder foil pack attached to a manifold. The two components combine and react when dispensed through a static mixing nozzle attached to the manifold. Hilti HIT-HY 200 V3 is available in 11.1-ounce (330 mL) and 16.9-ounce (500 mL) foil packs. The manifold attached to each foil pack is stamped with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened foil pack stored in a dry, dark environment and in accordance with Figure 6.

Hilti HIT-HY 200 V3 Adhesive is available in two options, Hilti HIT-HY 200-A V3 and Hilti HIT-HY 200-R V3. Both options are subject to the same technical data as set forth

in this report. Hilti HIT-HY 200-A V3 will have shorter working times and curing times than Hilti HIT-HY 200-R V3. The packaging for each option employs a different color, which helps the user distinguish between the two adhesives.

3.2.2 Hole Cleaning Equipment:

- **3.2.2.1 Standard Equipment:** Standard hole cleaning equipment, comprised of steel wire brushes and air nozzles, is described in Figure 6 of this report.
- **3.2.2.2 Hilti Safe-Set™ System:** The Hilti Safe-Set™ with Hilti HIT-HY 200 V3 consists of one of the following:
- For the Hilti HIT-Z and HIT-Z-R anchor rods, hole cleaning is not required after drilling the hole, except if the hole is drilled with a diamond core drill bit.
- For the elements described in Sections 3.2.4.2 through 3.2.4.4 and Section 3.2.5, the Hilti TE-CD or TE-YD hollow carbide drill bit with a carbide drilling head conforming to ANSI B212.15. Used in conjunction with a Hilti vacuum with a minimum value for the maximum volumetric flow rate of 129 CFM (61 ℓ/s), the Hilti TE-CD or TE-YD drill bit will remove the drilling dust, automatically cleaning the hole.

3.2.3 Hole Preparation Equipment:

- **3.2.3.1** Hilti Safe-Set™ System: TE-YRT Roughening Tool: For the elements described in Sections 3.2.5.2 through 3.2.5.4 and Tables 12, 13, 15, 18, 19, 21, 24, 25, 28 and 29, the Hilti TE-YRT roughening tool with a carbide roughening head is used for hole preparation in conjunction with holes core drilled with a diamond core bit as illustrated in Section 4.1.4.2 of this report.
- **3.2.4 Dispensers:** Hilti HIT-HY 200 V3 must be dispensed with manual or electric dispensers provided by Hilti.

3.2.5 Anchor Elements:

- **3.2.5.1 Hilti HIT-Z and HIT-Z-R Anchor Rods:** Hilti HIT-Z and HIT-Z-R anchor rods have a conical shape on the embedded section and a threaded section above the concrete surface. Mechanical properties for the Hilti HIT-Z and HIT-Z-R anchor rods are provided in Table 2. The rods are available in diameters as shown in Table 7 and Figure 1. Hilti HIT-Z anchor rods are produced from carbon steel and furnished with a 0.005-millimeter-thick (5 μm) zinc electroplated coating. Hilti HIT-Z-R anchor rods are fabricated from grade 316 stainless steel.
- **3.2.5.2 Threaded Steel Rods:** Threaded steel rods must be clean, continuously threaded rods (all-thread) in diameters as described in Tables 11 and 17 and Figure 1 of this report. Steel design information for common grades of threaded rods is provided in Table 3. Carbon steel threaded rods may be furnished with a 0.0002-inch-thick (0.005 mm) zinc electroplated coating complying with ASTM B633 SC 1 or must be hot-dipped galvanized complying with ASTM A153, Class C or D. Stainless steel threaded rods must comply with ASTM F593 or ISO 3506 A4. Threaded steel rods must be straight and free of indentations or other defects along their length. The ends may be stamped with identifying marks and the embedded end may be blunt cut or cut on the bias to a chisel point.
- 3.2.5.3 Steel Reinforcing Bars for use in Post-Installed Anchor Applications: Steel reinforcing bars are deformed bars as described in Table 4 of this report. Tables 11A, 17, and 23 and Figure 1 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust, mud, oil and other coatings (other than zinc) that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation except as set forth in ACI 318-19 Section 26.6.3.2(b) ACI 318-14

Section 26.6.3.1(b) or ACI 318-11 Section 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

- 3.2.5.4 Hilti HIS-N and HIS-RN Inserts: Hilti HIS-N and HIS-RN inserts have a profile on the external surface and are internally threaded. Mechanical properties for Hilti HIS-N and HIS-RN inserts are provided in Table 5. The inserts are available in diameters and lengths as shown in Table 27 and Figure 1. Hilti HIS-N inserts are produced from carbon steel and furnished with a 0.005-millimeter-thick (5 µm) zinc electroplated coating complying with ASTM B633 SC 1. The stainless steel Hilti HIS-RN inserts are fabricated from X5CrNiMo17122 K700 steel conforming to DIN 17440. Specifications for common bolt types that may be used in conjunction with Hilti HIS-N and HIS-RN inserts are provided in Table 6. Bolt grade and material type (carbon, stainless) must be matched to the insert. Strength reduction factors, ϕ , corresponding to brittle steel elements must be used for Hilti HIS-N and HIS-RN inserts.
- **3.2.5.5 Ductility:** In accordance with ACI 318-19 and ACI 318-14 2.3 or ACI 318-11 D.1, as applicable, in order for a steel element to be considered ductile, the tested elongation must be at least 14 percent and reduction of area must be at least 30 percent. Steel elements with a tested elongation of less than 14 percent or a reduction of area of less than 30 percent, or both, are considered brittle. Values for various steel materials are provided in Tables 2, 3, and 6 of this report. Where values are nonconforming or unstated, the steel must be considered brittle.
- **3.2.6 Steel Reinforcing Bars for Use in Post-Installed Reinforcing Bar Connections:** Steel reinforcing bars used in post-installed reinforcing bar connections are deformed bars (rebar) as depicted in Figures 2 and 3. Tables 30, 31, 32, and Figure 6 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust and other coatings that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in Section 26.6.3.2(b) of ACI 318-19, Section 26.6.3.1(b) of ACI 318-14 or Section 7.3.2 of ACI 318-11, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

3.3 Concrete:

Normal-weight and lightweight concrete must comply with Sections 1903 and 1905 of the IBC, as applicable. The specified compressive strength of the concrete must be from 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

4.0 DESIGN AND INSTALLATION

4.1 Strength Design of Post-Installed Anchors:

Refer to Table 1 for the design parameters for specific installed elements, and refer to Section 4.1.4.2 for a table to determine the applicable design bond strength or pullout strength.

4.1.1 General: The design strength of anchors under the 2021 IBC, as well as the 2021 IRC, must be determined in accordance with ACI 318-19 and this report. The design strength of anchors under the 2018 and 2015 IBC and 2018 and 2015 IRC must be determined in accordance with ACI 318-14 and this report. The design strength of anchors under the 2012 IBC, as well as the 2012 IRC must be determined in accordance with ACI 318-11 and this report.

Design parameters are based on ACI 318-19 for use with the 2021 IBC, ACI 318-14 for use with the 2018 and 2015 IBC, and ACI 318-11 for use with the 2012 IBC unless noted otherwise in Sections 4.1.1 through 4.1.11 of this report.

The strength design of anchors must comply with ACI 318-19 17.5.1.2 or ACI 318-14 17.3.1 or ACI 318-11 D.4.1 as applicable, except as required in ACI 318-19 17.10 or ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable.

Design parameters are provided in Table 7 through Table 29. Strength reduction factors, ϕ , as given in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable must be used for load combinations calculated in accordance with Section 1605.1 of the 2021 IBC or Section 1605.2 of the 2018, 2015 and 2012 IBC or ACI 318-19 and ACI 318-14 5.3 or ACI 318-11 9.2, as applicable. Strength reduction factors, ϕ , as given in ACI 318-11 D.4.4 must be used for load combinations calculated in accordance with ACI 318-11 Appendix C.

- **4.1.2 Static Steel Strength in Tension:** The nominal static steel strength of a single anchor in tension, $N_{\rm Sd}$, in accordance with ACI 318-19 17.6.1.2, ACI 318-14 17.4.1.2 or ACI 318-11 Section D.5.1.2, as applicable and the associated strength reduction factors, ϕ , in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 Section D.4.3, as applicable, are provided in the tables outlined in Table 1 for the anchor element types included in this report.
- **4.1.3 Static Concrete Breakout Strength in Tension:** The nominal concrete breakout strength of a single anchor or group of anchors in tension, N_{cb} or N_{cbg} , must be calculated in accordance with ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, with the following addition:

The basic concrete breakout strength of a single anchor in tension, N_b , must be calculated in accordance with ACI 318-19 17.6.2.2, ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable using the values of $k_{c,cr}$, and $k_{c,uncr}$ as described in this report. Where analysis indicates no cracking in accordance with ACI 318-19 17.6.2.5, ACI 318-14 17.4.2.6 or ACI 318-11 D.5.2.6, as applicable, N_b must be calculated using $k_{c,uncr}$ and $\Psi_{c,N}$ = 1.0. See Table 1. For anchors in lightweight concrete, see ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable. The value of f_c used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318-19 17.3.1, ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable. Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

4.1.4 Static Bond Strength/Static Pullout Strength in Tension:

4.1.4.1 Static Pullout Strength In Tension: Hilti HIT-Z and HIT-Z-R Anchor Rods: The nominal static pullout strength of a single anchor in accordance with ACI 318-19 17.6.3.1 and 17.6.3.2.1, ACI 318-14 17.4.3.1 and 17.4.3.2 or ACI 318-11 D.5.3.1 and D.5.3.2, as applicable, in cracked and uncracked concrete, $N_{p,cr}$ and $N_{p,uncr}$, respectively, is given in Table 10. For all design cases $\Psi_{c,P} = 1.0$.

Pullout strength values are a function of the concrete compressive strength, whether the concrete is cracked or uncracked, the drilling method (hammer drill, including Hilti hollow drill bit, diamond core drill) and installation conditions (dry or water-saturated). The resulting characteristic pullout strength must be multiplied by the associated strength reduction factor ϕ_{nn} as follows:

	HILTI HIT-Z AND HIT-Z-R THREADED RODS						
DRILLING METHOD	CONCRETE TYPE	PERMISSIBLE INSTALLATION CONDITIONS	PULLOUT STRENGTH	ASSOCIATED STRENGTH REDUCTION FACTOR			
Hammer- drill		Dry	N _{p,uncr}	ϕ_{d}			
(or Hilti TE-	Uncracked	Water saturated	$N_{p,uncr}$	ϕ ws			
YD Hollow Drill Bit) or		Dry	N _{p,cr}	ϕ_{d}			
Diamond Core Bit	Cracked	Water saturated	N _{p,cr}	Øws			

Section 4.1.4.2 of this report presents a pullout strength design selection table. Strength reduction factors for determination of the bond strength are given in the tables referenced in Table 1 of this report.

4.1.4.2 Static Bond Strength in Tension: Threaded Rod, Steel Reinforcing Bars, and Hilti HIS-N and HIS-RN Inserts: The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension, N_a or N_{ag} , must be calculated in accordance with ACI 318-19 17.6.5, ACI 318-14 17.4.5 or ACI 318-11 D.5.5, as applicable. Bond strength values are a function of the concrete compressive strength, whether the concrete is cracked or uncracked, the concrete temperature range, and the installation conditions (dry or water-saturated concrete). The resulting characteristic bond strength shall be multiplied by the associated strength reduction factor ϕ_{nn} as follows:

DRILLING METHOD	CONCRETE TYPE	PERMISSIBLE INSTALLATION CONDITIONS	BOND STRENGTH	ASSOCIATED STRENGTH REDUCTION FACTOR
Hammer- drill (or Hilti TE-	Uncracked	Dry	$ au_{k,uncr}$	ϕ a
CD or TE- YD Hollow Drill Bit) or	Uncracked	Water saturated	Tk,uncr	φws
Diamond Core Bit with Hilti	Cracked	Dry	Tk,cr	ϕ a
TE-YRT roughening tool		Water saturated	$ au_{k,cr}$	φws
Hammer- drill (or Hilti TE-	Uncracked	Water-filled	Tk,uncr	$\phi_{\!\scriptscriptstyle {W}\!f}$
CD or TE- YD Hollow Drill Bit)	Cracked	water-illeu	Tk,cr	$\phi_{\!\scriptscriptstyle Wf}$

Strength reduction factors for determination of the bond strength are outlined in Table 1 of this report. Adjustments to the bond strength may also be made for increased concrete compressive strength as noted in the footnotes to the bond strength tables. For anchors in lightweight concrete see ACI 318-19 17.2.4, ACI 318-14 17.2.6, or ACI 318-11 D.3.6, as applicable.

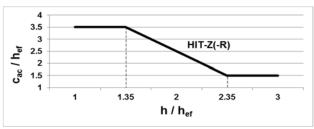
- **4.1.5** Static Steel Strength in Shear: The nominal static strength of a single anchor in shear as governed by the steel, $V_{\rm Sd}$, in accordance with ACI 318-19 17.7.1.2, ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable and strength reduction factors, ϕ , in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are given in the tables outlined in Table 1 for the anchor element types included in this report.
- **4.1.6 Static Concrete Breakout Strength in Shear:** The nominal static concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , must be calculated in accordance with ACI 318-19 17.7.2, ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, based on

information given in the tables outlined in Table 1. The basic concrete breakout strength of a single anchor in shear, V_b , must be calculated in accordance with ACI 318-19 17.7.2.2, ACI 318-14 17.5.2.2 or ACI 318-11 D.6.2.2, as applicable, using the values of d given in the tables as outlined in Table 1 for the corresponding anchor steel in lieu of d_a (2021, 2018, 2015, and 2012 IBC). In addition, h_{ef} must be substituted for ℓ_e . In no case must ℓ_e exceed 8d. The value of f_c must be limited to a maximum of 8,000 psi (55 MPa) in accordance with ACI 318-19 17.3.1, ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable.

- **4.1.7 Static Concrete Pryout Strength in Shear:** The nominal static pryout strength of a single anchor or group of anchors in shear, V_{cp} or V_{cpg} , must be calculated in accordance with ACI 318-19 17.7.3, ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable.
- **4.1.8 Interaction of Tensile and Shear Forces:** For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-19 17.8, ACI 318-14 17.6 or ACI 318-11 D.7, as applicable.
- 4.1.9 Minimum Member Thickness, h_{min} , Anchor Spacing, s_{min} and Edge Distance, c_{min} :
- **4.1.9.1 Hilti HIT-Z and HIT-Z-R Anchor Rods**: In lieu of ACI 318-19 17.9.2, ACI 318-14 17.7.1 and 17.7.3 or ACI 318-11 D.8.1 and D.8.3, as applicable, values of s_{min} and c_{min} described in Table 9 of this report must be observed for anchor design and installation. The minimum member thicknesses, h_{min} , given in Table 9 of this report must be observed for anchor design and installation.
- **4.1.9.2** Threaded Rod, Steel Reinforcing Bars, and Hilti HIS-N and HIS-RN Inserts: In lieu of ACI 318-19 17.9.2, ACI 318-14 17.7.1 and 17.7.3 or ACI 318-11 D.8.1 and D.8.3, as applicable, values of c_{min} and s_{min} described in this report must be observed for anchor design and installation. Likewise, in lieu of ACI 318-19 17.9.4, ACI 318-14 17.7.5 or ACI 318-11 D.8.5, as applicable, the minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. For adhesive anchors that will remain untorqued, ACI 318-19 17.9.3, ACI 318-14 17.7.4 or ACI 318-11 D.8.4, as applicable, applies.

For edge distances c_{ai} and anchor spacing s_{ai} , the maximum torque T_{max} shall comply with the following requirements:

REDUCED MAXIMUM INSTALLATION TORQUE $T_{max,red}$ FOR EDGE DISTANCES $c_{ai} < (5 \text{ x } d_a)$					
EDGE DISTANCE, c _{ai}	$\begin{array}{c} MAXIMUM \\ TORQUE, \ \textit{\textit{T}}_{\textit{max,red}} \end{array}$				
1.75 in. (45 mm) ≤ <i>c</i> _{ai}	5 x d _a ≤ s _{ai} < 16 in.	0.3 x T _{max}			
< 5 x d _a	$s_{ai} \ge 16 \text{ in. } (406 \text{ mm})$	0.5 x T _{max}			


4.1.10 Critical Edge Distance c_{ac} and $\psi_{cp,Na}$:

4.1.10.1 Hilti HIT-Z and HIT-Z-R Anchor Rods: In lieu of ACI 318-19 17.9.5, ACI 318-14 17.7.6 or ACI 318-11 D.8.6, as applicable, for the calculation of N_{cb} and N_{cbg} in accordance with ACI 318-19 17.6.2.6.1, ACI 318-14 17.4.2.7 or ACI 318-11 D.5.2.7, as applicable and Section 4.1.3 of this report, the critical edge distance, c_{ac} , must be determined as follows:

i. $c_{ac} = 1.5.h_{ef}$ for $h/h_{ef} \ge 2.35$

ii. $c_{ac} = 3.5.h_{ef}$ for $h/h_{ef} \le 1.35$

For definitions of h and h_{ef} , see Figure 1.

Linear interpolation is permitted to determine the ratio of c_{ac}/h_{ef} for values of h/h_{ef} between 2.35 and 1.35 as illustrated in the graph above.

4.1.10.2 Threaded Rod, Steel Reinforcing Bars, and Hilti HIS-N and HIS-RN Inserts: The modification factor $\psi_{cp,Na}$, must be determined in accordance with ACI 318-19 17.6.5.5, ACI 318-14 17.4.5.5 or ACI 318-11 D.5.5.5, as applicable, except as noted below:

For all cases where c_{Na}/c_{ac} <1.0, $\psi_{cp,Na}$ determined from ACI 318-19 Eq. 17.6.5.5.1b, ACI 318-14 Eq. 17.4.5.5b or ACI 318-11 Eq. D-27, as applicable, need not be taken less than c_{Na}/c_{ac} . For all other cases, $\psi_{cp,Na}$ shall be taken as 1.0.

The critical edge distance, c_{ac} must be calculated according Eq. 17.6.5.5.1c for ACI 318-19, to Eq. 17.4.5.5c for ACI 318-14 or Eq. D-27a for ACI 318-11, in lieu of ACI 318-19 17.9.5, ACI 318-14 17.7.6 or ACI 318-11 D.8.6, as applicable.

$$c_{ac} = h_{ef} \cdot \left(\frac{\tau_{k, uncr}}{1160}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$$

(Eq. 17.6.5.5.1c for ACI 318-19, Eq. 17.4.5.5c for ACI 318-14 or Eq. D-27a for ACI 318-11)

where

 $\left[\frac{h}{h_{\rm ef}}\right]$ need not be taken as larger than 2.4; and

 $au_{k,uncr}$ is the characteristic bond strength in uncracked concrete, h is the member thickness, and h_{ef} is the embedment depth.

 $\tau_{k,uncr}$ need not be taken as greater than:

$$\tau_{k,uncr} = \frac{k_{uncr} \sqrt{h_{ef} \dot{f_c}}}{\pi d}$$
 Eq. (4-1)

4.1.11 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchors must be designed in accordance with ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, except as described below:

Modifications to ACI 318-19 17.10 and ACI 318-14 17.2.3 shall be applied under Section 1905.1.8 of the 2021, 2018 and 2015 IBC, as applicable. For the 2012 IBC, Section 19.5.1.9 shall be omitted. The nominal steel shear strength, V_{sa} , must be adjusted by $\alpha_{V,seis}$ as given in the tables summarized in Table 1 for the anchor element types included in this report. For tension, the nominal pullout strength $N_{P,cr}$ or bond strength τ_{cr} must be adjusted by $\alpha_{N,seis}$. See Tables 10, 13, 14, 15, 16, 19, 20, 21, 22, 25, 26 and 29.

As an exception to ACI 318-11 D.3.3.4.2:

Anchors designed to resist wall out-of-plane forces with design strengths equal to or greater than the force determined in accordance with ASCE 7 Equation 12.11-1 or 12.14-10 shall be deemed to satisfy ACI 318-11 D.3.3.4.3(d). Under ACI 318-11 D.3.3.4.3(d), in lieu of requiring the anchor design tensile strength to satisfy the tensile strength requirements of ACI 318-11 D.4.1.1, the anchor design tensile strength shall be calculated from ACI 318-11 D.3.3.4.4.

The following exceptions apply to ACI 318-11 D.3.3.5.2:

- 1. For the calculation of the in-plane shear strength of anchor bolts attaching wood sill plates of bearing or non-bearing walls of light-frame wood structures to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3 need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:
 - 1.1. The allowable in-plane shear strength of the anchor is determined in accordance with AF&PA NDS Table 11E for lateral design values parallel to grain.
 - 1.2. The maximum anchor nominal diameter is $^{5}/_{8}$ inch (16 mm).
 - 1.3. Anchor bolts are embedded into concrete a minimum of 7 inches (178 mm).
 - 1.4. Anchor bolts are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the wood sill plate.
 - 1.5. Anchor bolts are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the wood sill plate.
 - 1.6. The sill plate is 2-inch or 3-inch nominal thickness.
- 2. For the calculation of the in-plane shear strength of anchor bolts attaching cold-formed steel track of bearing or non-bearing walls of light-frame construction to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3, need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:
 - 2.1. The maximum anchor nominal diameter is $^{5}/_{8}$ inch (16 mm).
 - 2.2. Anchors are embedded into concrete a minimum of 7 inches (178 mm).
 - 2.3. Anchors are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the track.
 - 2.4. Anchors are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the track.
 - 2.5. The track is 33 to 68 mil designation thickness.

Allowable in-plane shear strength of exempt anchors, parallel to the edge of concrete shall be permitted to be determined in accordance with AISI S100 Section E3.3.1.

3. In light-frame construction, bearing or nonbearing walls, shear strength of concrete anchors less than or equal to 1 inch [25 mm] in diameter attaching a sill plate or track to foundation or foundation stem wall need not satisfy ACI 318-11 D.3.3.5.3(a) through (c) when the design strength of the anchors is determined in accordance with ACI 318-11 D.6.2.1(c).

4.2 Strength Design of Post-Installed Reinforcing Bars:

4.2.1 General: The design of straight post-installed deformed reinforcing bars must be determined in accordance with ACI 318 rules for cast-in place reinforcing bar development and splices and this report.

Examples of typical applications for the use of post-installed reinforcing bars are illustrated in Figure 3 of this report.

4.2.2 Determination of bar development length I_d : Values of I_d must be determined in accordance with the ACI

318 development and splice length requirements for straight cast-in place reinforcing bars.

Exceptions:

- 1. For uncoated and zinc-coated (galvanized) post-installed reinforcing bars, the factor Ψ_e shall be taken as 1.0. For all other cases, the requirements in ACI 318-19 25.4.2.5, ACI 318-14 25.4.2.4 or ACI 318-11 Section 12.2.4 (b) shall apply.
- 2. When using alternate methods to calculate the development length (e.g., anchor theory), the applicable factors for post-installed anchors generally apply.
- **4.2.3 Minimum Member Thickness,** *h_{min}*, **Minimum Concrete Cover,** *c_{c,min}*, **Minimum Concrete Edge Distance,** *c_{b,min}*, **Minimum Spacing,** *s_{b,min}*,: For post-installed reinforcing bars, there is no limit on the minimum member thickness. In general, all requirements on concrete cover and spacing applicable to straight cast-in bars designed in accordance with ACI 318 shall be maintained.

For post-installed reinforcing bars installed at embedment depths, h_{ef} , larger than 20d (h_{ef} > 20d), the minimum concrete cover shall be as follows:

REBAR SIZE	MINIMUM CONCRETE COVER, $c_{c,min}$
d _b ≤ No. 6 (16mm)	1 ³ / ₁₆ in.(30mm)
No. $6 < d_b \le No.10$	1 ⁹ / ₁₆ in.
$(16mm < d_b \le 32mm)$	(40mm)

The following requirements apply for minimum concrete edge and spacing for $h_{ef} > 20d$:

Required minimum edge distance for post-installed reinforcing bars (measured from the center of the bar):

$$c_{b,min} = d_0/2 + c_{c,min}$$

Required minimum center-to-center spacing between post-installed bars:

$$s_{b,min} = d_0 + c_{c,min}$$

Required minimum center-to-center spacing from existing (parallel) reinforcing:

 $s_{b,min} = d_b/2$ (existing reinforcing) + $d_0/2$ + $c_{c,min}$

4.2.4 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Category C, D, E or F under the IBC or IRC, design of straight post-installed reinforcing bars must take into account the provisions of ACI 318-19 or ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

4.3 Installation:

Installation parameters are illustrated in Figure 1. Installation must be in accordance with ACI 318-19 26.7.2, ACI 318-14 17.8.1 and 17.8.2 or ACI 318-11 D.9.1 and D.9.2, as applicable. Anchor and post-installed reinforcing bar locations must comply with this report and the plans and specifications approved by the code official. Installation of the Hilti HIT-HY 200 V3 Adhesive Anchor and Post-Installed Reinforcing Bar Systems must conform to the manufacturer's printed installation instructions (MPII) included in each unit package as provided in Figure 6 of this report. The MPII contains additional requirements for combinations of drill hole depth, diameter, drill bit type, and dispensing tools.

4.4 Special Inspection:

Periodic special inspection must be performed where required in accordance with Section 1705.1.1 and Table 1705.3 of the 2021, 2018, 2015 and 2012 IBC, and this report. The special inspector must be on the jobsite initially during anchor or post-installed reinforcing bar installation to verify anchor or post-installed reinforcing bar type and dimensions, concrete type, concrete compressive strength, adhesive identification and expiration date, hole dimensions, hole cleaning procedures, spacing, edge distances, concrete thickness, anchor or post-installed reinforcing bar embedment, tightening torque and adherence to the manufacturer's printed installation instructions.

The special inspector must verify the initial installations of each type and size of adhesive anchor or post-installed reinforcing bar by construction personnel on site. Subsequent installations of the same anchor or post-installed reinforcing bar type and size by the same construction personnel are permitted to be performed in the absence of the special inspector. Any change in the anchor or post-installed reinforcing bar product being installed or the personnel performing the installation requires an initial inspection. For ongoing installations over an extended period, the special inspector must make regular inspections to confirm correct handling and installation of the product.

Continuous special inspection of adhesive anchors or post-installed reinforcing bar installed in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed in accordance with ACI 318-19 26.13.3.2e and 26.7.1(j), ACI 318-14 17.8.2.4, 26.7.1(h), and 26.13.3.2(c) or ACI 318-11 D.9.2.4, as applicable.

Under the IBC, additional requirements as set forth in Sections 1705, 1706, and 1707 must be observed, where applicable.

5.0 CONDITIONS OF USE

The Hilti HIT-HY 200 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System described in this report complies with, or is a suitable alternative to what is specified in, the codes listed in Section 1.0 of this report, subject to the following conditions:

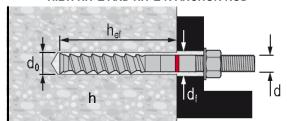
- 5.1 Hilti HIT-HY 200 V3 Adhesive anchors and postinstalled reinforcing bars must be installed in accordance with the manufacturer's printed installation instructions (MPII) as included in the adhesive packaging and provided in Figure 6 of this report.
- **5.2** The anchors and post-installed reinforcing bars must be installed in cracked and uncracked normal-weight or lightweight concrete having a specified compressive strength f^c = 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).
- **5.3** The values of f'_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) except as noted in Sections 4.2.2 and 4.2.4 of this report.
- 5.4 The concrete shall have attained its minimum design strength prior to installation of the adhesive anchors.
- 5.5 Anchors and post-installed reinforcing bars must be installed in concrete base materials in holes predrilled in accordance with the instructions in Figure 6, using carbide-tipped masonry drill bits manufactured with the range of maximum and minimum drill-tip dimensions specified in ANSI B212.15-1994. The Hilti HIT-Z(-R) anchor rods may be installed in holes predrilled using diamond core drill bits. Threaded rods, reinforcing bars, and the Hilti HIS-(R)N inserts may be installed in

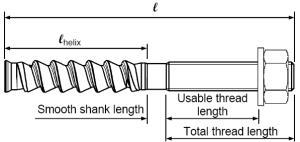
- holes predrilled using diamond core bits and roughened with the Hilti TE-YRT roughening tool as detailed in Figure 6.
- 5.6 Loads applied to the anchors must be adjusted in accordance with Section 1605.1 of the 2021 IBC or Section 1605.2 of the 2018, 2015 and 2012 IBC for strength design and in accordance with Section 1605.1 of the 2021 IBC or Section 1605.3 of the 2018, 2015, and 2012 IBC for allowable stress design.
- 5.7 Hilti HIT-HY 200 V3 adhesive anchors and postinstalled reinforcing bars are recognized for use to resist short- and long-term loads, including wind and earthquake, subject to the conditions of this report.
- 5.8 In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchor strength must be adjusted in accordance in accordance with Section 4.1.11 of this report, and post-installed reinforcing bars must comply with section 4.2.4 of this report.
- 5.9 Hilti HIT-HY 200 V3 adhesive anchors and postinstalled reinforcing bars are permitted to be installed in concrete that is cracked or that may be expected to crack during the service life of the anchor, subject to the conditions of this report.
- **5.10** Anchor strength design values must be established in accordance with Section 4.1 of this report.
- 5.11 Post-installed reinforcing bar development and splice length is established in accordance with Section 4.2 of this report.
- 5.12 Minimum anchor spacing and edge distance as well as minimum member thickness must comply with the values noted in this report.
- 5.13 Post-installed reinforcing bar spacing, minimum member thickness, and cover distance must be in accordance with the provisions of ACI 318 for cast-in place bars and section 4.2.3 of this report.
- 5.14 Prior to anchor installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- 5.15 Anchors and post-installed reinforcing bars are not permitted to support fire-resistive construction. Where not otherwise prohibited by the code, Hilti HIT-HY 200 V3 adhesive anchors and post-installed reinforcing bars are permitted for installation in fire-resistive construction provided that at least one of the following conditions is fulfilled:
 - Anchors and post-installed reinforcing bars are used to resist wind or seismic forces only.
 - Anchors and post-installed reinforcing bars that support gravity load—bearing structural elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - Anchors and post-installed reinforcing bars are used to support nonstructural elements.
- 5.16 Since an ICC-ES acceptance criteria for evaluating data to determine the performance of adhesive anchors and post-installed reinforcing bars subjected to fatigue or shock loading is unavailable at this time,

- the use of these anchors under such conditions is beyond the scope of this report.
- **5.17** Use of zinc-plated carbon steel threaded rods or steel reinforcing bars is limited to dry, interior locations.
- 5.18 Use of hot-dipped galvanized carbon steel and stainless steel rods is permitted for exterior exposure or damp environments.
- 5.19 Steel anchoring materials in contact with preservative-treated and fire-retardant-treated wood must be of zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153.
- 5.20 Periodic special inspection must be provided in accordance with Section 4.4 of this report. Continuous special inspection for anchors and post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be provided in accordance with Section 4.4 of this report.
- 5.21 Installation of anchors and post-installed reinforcing bars in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed by personnel certified by an applicable certification program in accordance with ACI 318-19 26.7.2(e), ACI 318-14 17.8.2.2 or 17.8.2.3, or ACI 318-11 D.9.2.2 or D.9.2.3, as applicable.
- 5.22 Hilti HIT-HY 200 V3 adhesive anchors and postinstalled reinforcing bars may be used to resist tension and shear forces in floor, wall, and overhead installations only if installation is into concrete with a temperature between 14°F and 104°F (-10°C and 40°C) for threaded rods, rebar, and Hilti HIS-(R)N inserts, or between 41°F and 104°F (5°C and 40°C) for Hilti HIT-Z(-R) anchor rods. (For post-installed reinforcing bars with embedment depth greater than 20d refer to additional temperature limitations in the MPII as provided in Figure 6 of this report). Overhead installations for hole diameters larger than 7/16-inch or 10mm require the use of piston plugs (HIT-SZ, -IP) during injection to the back of the hole. 7/16-inch diameter holes may be injected directly to the back of the hole with the use of extension tubing on the end of the nozzle. The anchor or post-installed reinforcing bars must be supported until fully cured (i.e., with Hilti HIT-OHW wedges, or other suitable means). Where temporary restraint devices are used, their use shall not result in impairment of the anchor shear resistance. Installations in concrete temperatures below 32°F require the adhesive to be conditioned to a minimum temperature of 32°F.
- 5.23 Anchors and post-installed reinforcing bars when installed at temperatures below 40°F shall not be used for applications where the concrete temperature can rise from 40°F or less to 80°F or higher within a 12-hour period. Such applications may include, but are

- not limited to, anchorage of building façade systems and other applications subject to direct sun exposure.
- 5.24 Hilti HIT-HY 200-A V3 and Hilti HIT-HY 200-R V3 adhesives are manufactured by Hilti GmbH, Kaufering, Germany, under a quality control program with inspections by ICC-ES.
- 5.25 Hilti HIT-Z and HIT-Z-R rods are manufactured by Hilti AG, Schaan, Liechtenstein, under a quality-control program with inspections by ICC-ES.
- 5.26 Hilti HIS-N and HIS-RN inserts are manufactured by Hilti (China) Ltd., Guangdong, China, under a quality-control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED


Data in accordance with the ICC-ES Acceptance Criteria for Post-installed Adhesive Anchors in Concrete Elements (AC308), dated June 2019, editorially revised February 2021, which incorporates requirements in ACI 355.4-11 and ACI 355.4-19, and Table 3.8 for evaluating post-installed reinforcing bars.


7.0 IDENTIFICATION

- 7.1 Product labeling shall include, the name of the report holder or listee, and the ICC-ES mark of conformity. The listing or evaluation report number (ICC-ES ESR-4868) may be used in lieu of the mark of conformity. Hilti HIT-HY 200 A V3 and Hilti HIT HY 200 R V3 adhesive is identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, product name, lot number, expiration date, and evaluation report number (ESR-4868).
- 7.2 Hilti HIT-Z and HIT-Z-R rods are identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, anchor name, and evaluation report number (ESR-4868).
- 7.3 Hilti HIS-N and HIS-RN inserts are identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, anchor name and size, and evaluation report number (ESR-4868).
- 7.4 Threaded rods, nuts, washers, bolts, cap screws, and deformed reinforcing bars are standard elements and must conform to applicable national or international specifications.
- **7.5** The report holder's contact information is the following:

HILTI, INC.
7250 DALLAS PARKWAY, SUITE 1000
PLANO, TEXAS 75024
(800) 879-8000
www.hilti.com
HiltiTechEng@us.hilti.com

HILTI HIT-Z AND HIT-Z-R ANCHOR ROD

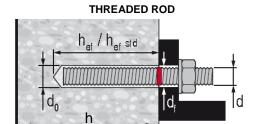
FRACTIONAL HIT-Z AND HIT-Z-R ANCHOR ROD

	Ø d₀	h _{ef} [inch]	T _{inst}	[ft-lb]	T _{inst}	[Nm]
Ø d [inch]	[inch]		HIT-Z	HIT-Z-R	HIT-Z	HIT-Z-R
3/8	7/16	2 3/8 4 1/2	15	30	20	40
1/2	9/16	2 ³ / ₄ 6	30	65	40	90
5/8	3/4	3 3/4 7 1/2	60	125	80	170
3/4	7/8	4 8 1/2	110	165	150	220

METRIC HIT-Z AND HIT-Z-R ANCHOR ROD

DODODO	$ \emptyset d_0 $	h _{nom}	T _{inst}	[Nm]
Ø d [mm]	[mm]	[mm]		HIT-Z-R
M10	12	60120	25	55
M12	14	70144	40	75
M16	18	96192	80	155
M20	22	100220	150	215

 										
Name and Size		ℓ · Length		_{elix} Length		h Shank ngth		Thread ngth		Thread igth
	in	(mm)	in	(mm)	in	(mm)	In	(mm)	in	(mm)
HIT-Z(-R) ³ / ₈ "x3 ³ / ₈ "	33/8	(85)	21/4	(57)	3/8	(6)	¹³ / ₁₆	(21)	⁵ / ₁₆	(8)
HIT-Z(-R) ³ / ₈ " x 4 ³ / ₈ "	43/8	(111)	21/4	(57)	⁵ / ₁₆	(8)	1 ¹³ / ₁₆	(46)	1 ⁵ / ₁₆	(33)
HIT-Z(-R) ³ / ₈ " x 5 ¹ / ₈ "	5 ¹ / ₈	(130)	21/4	(57)	⁵ / ₁₆	(8)	2 ⁹ / ₁₆	(65)	2 ¹ / ₁₆	(52)
HIT-Z(-R) ³ / ₈ " x 6 ³ / ₈ "	6 ³ / ₈	(162)	21/4	(57)	⁵ / ₁₆	(8)	3 ¹³ / ₁₆	(97)	3 ⁵ / ₁₆	(84)
HIT-Z(-R) ¹ / ₂ " x 4 ¹ / ₂ "	41/2	(114)	21/2	(63)	⁵ / ₁₆	(8)	1 ¹¹ / ₁₆	(43)	1	(26)
HIT-Z(-R) ¹ / ₂ " x 6 ¹ / ₂ "	6 ¹ / ₂	(165)	21/2	(63)	⁵ / ₁₆	(8)	3 ¹¹ / ₁₆	(94)	3 ¹ / ₁₆	(77)
HIT-Z(-R) ¹ / ₂ " x 7 ³ / ₄ "	73/4	(197)	21/2	(63)	⁵ / ₁₆	(8)	4 ¹⁵ / ₁₆	(126)	4 ⁵ / ₁₆	(109)
HIT-Z(-R) ⁵ / ₈ " x 6"	6	(152)	35/8	(92)	⁷ / ₁₆	(11)	1 ¹⁵ / ₁₆	(49)	1 ¹ / ₈	(28)
HIT-Z(-R) ⁵ / ₈ " x 8"	8	(203)	35/8	(92)	⁷ / ₁₆	(11)	3 ¹⁵ / ₁₆	(100)	31/8	(79)
HIT-Z(-R) ⁵ / ₈ " x 9 ¹ / ₂ "	91/2	(241)	35/8	(92)	1 ¹⁵ / ₁₆	(49)	315/16	(100)	31/8	(79)
HIT-Z(-R) 3/4"x 61/2"	6½"	(165)	4	(102)	⁵ / ₁₆	(8)	2	(51)	1	(26)
HIT-Z(-R) ³ / ₄ " x 8 ¹ / ₂ "	8 ¹ / ₂	(216)	4	(102)	⁷ / ₁₆	(12)	4	(102)	3 ¹ / ₁₆	(77)
HIT-Z(-R) ³ / ₄ " x 9 ³ / ₄ "	93/4	(248)	4	(102)	1 ¹¹ / ₁₆	(44)	4	(102)	3 ¹ / ₁₆	(77)
HIT-Z(-R) M10x95	33/4	(95)	1 ¹⁵ / ₁₆	(50)	¹¹ / ₁₆	(18)	1 ¹ / ₈	(27)	⁹ / ₁₆	(14)
HIT-Z(-R) M10x115	41/2	(115)	1 ¹⁵ / ₁₆	(50)	11/16	(18)	1 ⁷ / ₈	(47)	1 ⁵ / ₁₆	(34)
HIT-Z(-R) M10x135	5 ⁵ / ₁₆	(135)	1 ¹⁵ / ₁₆	(50)	11/16	(18)	2 ⁵ / ₈	(67)	21/8	(54)
HIT-Z(-R) M10x160	6 ⁵ / ₁₆	(160)	1 ¹⁵ / ₁₆	(50)	11/16	(18)	35/8	(92)	31/8	(79)
HIT-Z(-R) M12x105	41/8	(105)	23/8	(60)	⁵ / ₁₆	(8)	11/2	(37)	¹³ / ₁₆	(21)
HIT-Z(-R) M12x140	51/2	(140)	23/8	(60)	5/16	(8)	2 ⁷ / ₈	(72)	2 ³ / ₁₆	(56)
HIT-Z(-R) M12x155	6 ¹ / ₈	(155)	23/8	(60)	⁵ / ₁₆	(8)	33/8	(87)	2 ¹³ / ₁₆	(71)
HIT-Z(-R) M12x196	73/4	(196)	23/8	(60)	⁵ / ₁₆	(8)	5	(128)	4 ⁷ / ₁₆	(112)
HIT-Z(-R) M16x155	6 ¹ / ₈	(155)	311/16	(93)	⁷ / ₁₆	(11)	2	(51)	1 ³ / ₁₆	(30)
HIT-Z(-R) M16x175	6 ⁷ / ₈	(175)	311/16	(93)	⁷ / ₁₆	(11)	2 ¹³ / ₁₆	(71)	1 ¹⁵ / ₁₆	(50)
HIT-Z(-R) M16x205	81/16	(205)	311/16	(93)	⁷ / ₁₆	(11)	4	(101)	31/8	(80)
HIT-Z(-R) M16x240	9 ⁷ / ₁₆	(240)	311/16	(93)	11/4	(32)	41/2	(115)	311/16	(94)
HIT-Z(-R) M20x215	81/2	(215)	315/16	(100)	1/2	(13)	4	(102)	3 ¹ / ₁₆	(78)
HIT-Z(-R) M20x250	9 ¹³ / ₁₆	(250)	3 ¹⁵ / ₁₆	(100)	1 ⁷ / ₈	(48)	4	(102)	3 ¹ / ₁₆	(78)
					_		_			


DEFORMED REINFORCMENT

US REBAR				
מעמממעע	Ød₀	h _{ef} std	h _{ef}	
d	[inch]	[inch]	[inch]	
#3	1/2	33/8	23/871/2	
#4	5/8	4 1/2	23/410	
#5	3/4	5 ⁵ %	31/8121/2	
#6	7/8	63/4	31/215	
#7	1	7 1/8	31/2171/2	
#8	1 1/8	9	420	
#9	13/8	101/8	41/2221/2	
#10	1 1/2	11 1/4	525	

CANADIAN REBAR				
ממממממי	Ød₀	h _{ef std}	h _{ef}	
d	[inch]	[mm]	[mm]	
10 M	9/16	115	70226	
15 M	3/4	145	80320	
20 M	1	200	90390	
25 M	11/4	230	101504	
30 M	1 1/2	260	120598	

EUROPEAN REBAR					
ण्यायययया Ø d [mm]	Ød₀[mm]	h _{ef} std [mm]	h _{ef} [mm]		
10	14	90	60200		
12	16	110	70240		
14	18	125	75280		
16	20	125	80320		
20	25	170	90400		
25	32	210	100500		
28	35	270	112560		
32	40	300	128640		

	FRACTIONAL THREADED ROD						
Ø d [inch]	Ød₀ [inch]	h _{ef} std [inch]	h _{ef} [inch]	T _{max} [ft-lb]	T _{max} [Nm]		
3/8	7/16	33/8	23/871/2	15	20		
1/2	9/16	41/2	23/410	30	41		
5/8	3/4	55/8	31/8121/2	60	81		
3/4	7/8	63/4	31/215	100	136		
7/8	1	7 7/8	31/2171/2	125	169		
1	1 1/8	9	420	150	203		
1 1/4	13/8	111/4	5 25	200	271		

METRIC THREADED ROD					
Ø d [mm]	Ød₀[mm]	h _{ef std} [mm]	h _{ef} [mm]	T _{max} [Nm]	
M10	12	90	60200	20	
M12	14	110	70240	40	
M16	18	125	80320	80	
M20	22	170	90400	150	
M24	28	210	96480	200	
M27	30	240	108540	270	
M30	35	270	120600	300	

HILTI HIS-N AND HIS-RN THREADED INSERTS

FRA	FRACTIONAL HILTI HIS-N AND HIS-RN THREADED INSERTS												
Ø d [inch]	Ød₀ [inch]	h _{ef} [inch]	Ø d _f [inch]	h _s [inch]	T _{max} [ft-lb]	T _{max} [Nm]							
3/8	11/16	43%	7/16	3/815/16	15	20							
1/2	7/8	5	9/16	1/21 3/16	30	41							
5/8	1 1/8	63/4	11/16	5/81 1/2	60	81							
3/4	11/4	81/8	13/16	3/417/8	100	136							

ME:	METRIC HILTI HIS-N AND HIS-RN THREADED INSERTS												
Ø d [mm]	Ød₀[mm]	h _{ef} [mm]	Ød _i [mm]	h _s [mm]	T _{max} [Nm]								
M8	14	90	9	820	10								
M10	18	110	12	1025	20								
M12	22	125	14	1230	40								
M16	28	170	18	1640	80								
M20	32	205	22	2050	150								

FIGURE 1—INSTALLATION PARAMETERS FOR POST INSTALLED ADHESIVE ANCHORS (Continued)

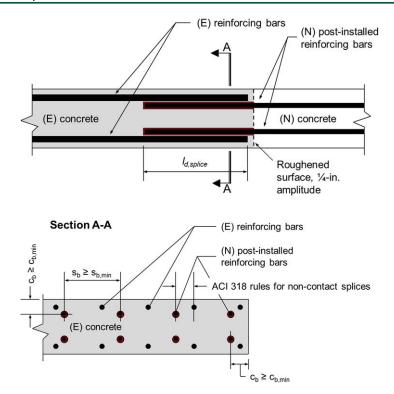


FIGURE 2—INSTALLATION PARAMATERS FOR POST-INSTALLED REINFORCING BARS

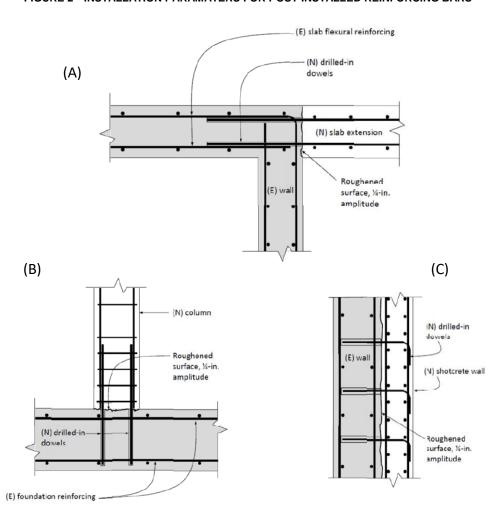


FIGURE 3—APPLICATION EXAMPLES FOR POST-INSTALLED REINFORCING BARS:

(A) TENSION LAP SPLICE WITH EXISTING FLEXURAL REINFORCEMENT; (B) TENSION DEVELOPMENT OF COLUMN DOWELS;

(C) DEVELOPMENT OF SHEAR DOWELS FOR NEWLY THICKENED SHEAR WALL

TABLE 1—DESIGN TABLE INDEX

Danimu	Table	Fract	ional	Me	tric
Design	Table	Table	Page	Table	Page
Hilti HIT-Z and HIT-Z-R Anchor Rod	Steel Strength - N_{sa} , V_{sa}	7	14	7	14
£955554=	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cbg} , V_{cpg}	8	15	8	15
,	Pullout Strength – N_p	10	19	10	19
Standard Threaded Rod	Steel Strength - N _{sa} , V _{sa}	11	20	17	27
	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cbg} , V_{cpg}	12	22	18	28
	Bond Strength - Na, Nag	15 & 16	25 & 26	21 & 22	31 & 32
Hilti HIS-N and HIS-RN Internally Threaded Insert	Steel Strength - N_{sa} , V_{sa}	27	36	27	36
ARREST (1888	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cbg} , V_{cpg}	28	37	28	37
	Bond Strength - N _a , N _{ag}	29	38	29	38

Danier	Design Table						ıdian
Design	Table	Page	Table	Page	Table	Page	
Steel Reinforcing Bars	11A	21	17	27	23	33	
	Concrete Breakout – N_{cb} , N_{cbg} , V_{cb} , V_{cbg} , V_{cpg}	12	22	18	28	24	33
	Bond Strength – N _a , N _{ag}	13 & 14	23& 24	19 & 20	29 & 30	25 & 26	34 & 35
	Determination of development length for post-installed reinforcing bar connections		39	31	40	32	40

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF FRACTIONAL AND METRIC HIT-Z AND HIT-Z RODS

	HIT-Z AND HIT-Z-R ROD SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength 0.2 percent offset, fya	f _{uta} /f _{ya}	Elongation, min. percent	Reduction of Area, min. percent	Specification for nuts ²	
TEEL	$^{3}/_{8}$ -in. to $^{5}/_{8}$ -in. and M10 to M12 - AISI 1038 $^{3}/_{4}$ -in AISI 1038 or 18MnV5	psi (MPa)	94,200 (650)	75,300 (520)					
CARBON STEEL	M16 - AISI 1038	psi (MPa)	88,400 (610)	71,000 (490)	1.25	8	20	ASTM A563 Grade A	
CAF	M20 - AISI 1038 or 18MnV5	psi (MPa)	86,200 (595)	69,600 (480)					
STEEL	³ / ₈ -in. to ³ / ₄ -in. and M10 to M12 Grade 316 DIN-EN 10263-5 X5CrNiMo 17-12-2+AT	psi (MPa)	94,200 (650)	75,300 (520)					
STAINLESS ST	M16 Grade 316 DIN-EN 10263-5 X5CrNiMo 17-12-2+AT	psi (MPa)	88,400 (610)	71,000 (490)	1.25	8	20	ASTM F594 Type 316	
STAIN	M20 Grade 316 DIN-EN 10263-5 X5CrNiMo 17-12-2+AT	psi (MPa)	86,200 (595)	69,600 (480)					

¹ Steel properties are minimum values and maximum values will vary due to the cold forming of the rod.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL THREADED ROD MATERIALS¹

2500000	EADED ROD SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength 0.2 percent offset, fya	f _{uta} /f _{ya}	Elongation, min. percent ⁷	Reduction of Area, min. percent	Specification for nuts ⁸	
	ASTM A193 ² Grade B7 $\leq 2^{1}/_{2}$ in. (\leq 64 mm)	psi (MPa)	125,000 (862)	105,000 (724)	1.19	16	50	ASTM A563 Grade DH	
	ASTM F568M ³ Class 5.8 M5 (¹ / ₄ in.) to M24 (1 in.)	psi	72,500	58,000	1.25	10	35	ASTM A563 Grade DH ⁹	
	(equivalent to ISO 898-1)	(MPa)	(500)	(400)	1.23	10	33	DIN 934 (8-A2K)	
TEEL	ASTM F1554, Grade 36 ⁷	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40	ASTM A194 or ASTM A563	
CARBON STEEL	ASTM F1554, Grade 55 ⁷	psi (MPa)	75,000 (517)	55,000 (379)	1.36	21	30	ASTM A194 or ASTM A563	
CAR	ASTM F1554, Grade 105 ⁷	psi (MPa)	125,000 (862)	105,000 (724)	1.19	15	45	ASTM A194 or ASTM A563	
	ISO 898-1 ⁴ Class 5.8	MPa (psi)	500 (72,500)	400 (58,000)	1.25	22	-	DIN 934 Grade 6	
	ISO 898-1 ⁴ Class 8.8	MPa (psi)	800 (116,000)	640 (92,800)	1.25	12	52	DIN 934 Grade 8	
	ASTM F593 ⁵ CW1 (316) ¹ / ₄ -in. to ⁵ / ₈ -in.	psi (MPa)	100,000 (689)	65,000 (448)	1.54	20	-	ASTM F594	
STEEL	ASTM F593 ⁵ CW2 (316) 3/ ₄ -in. to 1 ¹ / ₂ -in.	psi (MPa)	85,000 (586)	45,000 (310)	1.89	25	-	ASTM F594	
	ASTM A193 Grade 8(M), Class 1 ² - 1 ¼-in.	psi (MPa)	75,000 (517)	30,000 (207)	2.50	30	50	ASTM F594	
STAINLESS	ISO 3506-1 ⁶ A4-70 M8 – M24	MPa (psi)	700 (101,500)	450 (65,250)	1.56	40	-	ISO 4032	
	ISO 3506-1 ⁶ A4-50 M27 – M30	MPa (psi)	500 (72,500)	210 (30,450)	2.38	40	-	ISO 4032	

¹ Hilti HIT-HY 200 V3 adhesive may be used in conjunction with all grades of continuously threaded carbon or stainless steel rod (all-thread) that comply with the code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

² Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service
 Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners
 Mechanical properties of fasteners made of carbon steel and alloy steel – Part 1: Bolts, screws and studs

⁵ Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs

⁶ Mechanical properties of corrosion-resistant stainless steel fasteners – Part 1: Bolts, screws and studs

⁷ Based on 2-in. (50 mm) gauge length except for A 193, which are based on a gauge length of 4d and ISO 898, which is based on 5d.

⁸ Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

⁹ Nuts for fractional rods.

TABLE 4—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS

REINFORCING BAR SPECIFICATION	ĺ	Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength, f_{ya}
ASTM A615 ¹ Gr. 60	psi	80,000	60,000
ASTM A015 GI. 60	(MPa)	(550)	(414)
ASTM A615 ¹ Gr. 40	psi	60,000	40,000
ASTM A015 GI. 40	(MPa)	(414)	(276)
ASTM A706 ² Gr. 60	psi	80,000	60,000
ASTM A706- Gr. 60	(MPa)	(550)	(414)
DIN 488 ³ BSt 500	MPa	550	500
MIN 400° DOL 300	(psi)	(79,750)	(72,500)
CAN/CSA-G30.18 ⁴ Gr. 400	MPa	540	400
CAIN/COA-GOU. 10 GF. 400	(psi)	(78,300)	(58,000)

¹ Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement

TABLE 5—SPECIFICATIONS AND PHYSICAL PROPERTIES OF FRACTIONAL AND METRIC HIS-N AND HIS-RN INSERTS

HILTI HIS-N AND HIS-RN INSERTS		Minimum specified ultimate strength, f_{uta}	Minimum specified yield strength, f_{ya}
Carbon Steel DIN EN 10277-3 11SMnPb30+c or DIN	psi	71,050	59,450
1561 9SMnPb28K 3/8-in. and M8 to M10	(MPa)	(490)	(410)
Carbon Steel DIN EN 10277-3 11SMnPb30+c or DIN	psi	66,700	54,375
1561 9SMnPb28K 1/ ₂ to 3/ ₄ -in. and M12 to M20	(MPa)	(460)	(375)
Stainless Steel	psi	101,500	50,750
EN 10088-3 X5CrNiMo 17-12-2	(MPa)	(700)	(350)

TABLE 6—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON BOLTS, CAP SCREWS AND STUDS FOR USE WITH HIS-N AND HIS-RN INSERTS^{1,2}

BOLT, CAP SCREW OR STUD SPECIFICATION		Minimum specified ultimate strength f _{uta}	Minimum specified yield strength 0.2 percent offset f_{ya}	f _{uta} /f _{ya}	Elongation, min.	Reduction of Area, min.	Specification for nuts ⁶	
SAE J429 ³ Grade 5	psi	120,000	92,000	1.30	14	35	SAE J995	
	(MPa)	(828)	(634)					
ASTM A325 ⁴ ¹ / ₂ to 1-in.	psi	120,000	92,000	1.30	14	35	A563 C, C3, D, DH,	
AOTM/A020 /2 to Fin.	(MPa)	(828)	(634)	1.50		55	DH3 Heavy Hex	
ASTM A193 ⁵ Grade B8M (AISI	psi	110,000	95,000	1.16	15	45	ASTM F594 ⁷	
316) for use with HIS-RN	(MPa)	(759)	(655)	1.10	15	45	Alloy Group 1, 2 or 3	
ASTM A193 ⁵ Grade B8T (AISI	psi	125,000	100,000	1.25	12	35	ASTM F594 ⁷	
321) for use with HIS-RN	(MPa)	(862)	(690)	1.25	12	33	Alloy Group 1, 2 or 3	

¹ Minimum Grade 5 bolts, cap screws or studs must be used with carbon steel HIS inserts.

² Standard Specification for Low Alloy Steel Deformed and Plain Bars for Concrete Reinforcement

³ Reinforcing steel; reinforcing steel bars; dimensions and masses

⁴ Billet-Steel Bars for Concrete Reinforcement

 $^{^{\}rm 2}$ Only stainless steel bolts, cap screws or studs must be used with HIS-RN inserts.

³ Mechanical and Material Requirements for Externally Threaded Fasteners

⁴ Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength

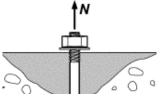
⁵ Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

⁶ Nuts must have specified minimum proof load stress equal to or greater than the specified minimum full-size tensile strength of the specified stud.

⁷ Nuts for stainless steel studs must be of the same alloy group as the specified bolt, cap screw, or stud.

Fractional and Metric HIT-Z and HIT-Z-R **Anchor Rod**

Steel Strength


TABLE 7—STEEL DESIGN INFORMATION FOR FRACTIONAL AND METRIC HIT-Z AND HIT-Z-R ANCHOR RODS

DE	SIGN	Comple at	Units	Nomi	nal Rod Dia	a. (in.) Frac	tional	Units	Non	ninal Rod D	ia. (mm) M	etric
INF	DESIGN INFORMATION Rod O.D. Rod effective cross-sectional area Nominal strength as governed by steel strength¹ Reduction for seismic shear Strength reduction factor for tension² Strength reduction factor for shear²	Symbol	Units	3/8	1/2	5/8	3/4	Units	10	12	16	20
Por	4 O D	d	in.	0.375	0.5	0.625	0.75	mm	10	12	16	20
	J O.D.	u	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(in.)	(0.39)	, , , , , , , , , , , , , , , , , , ,		
Roo	d effective cross-	A _{se}	in.²	0.0775	0.1419	0.2260	0.3340	mm ²	58.0	84.3	157.0	245.0
sec	tional area	Ase	(mm ²)	(50)	(92)	(146)	(216)	(in.²)	(0.090)	(0.131)	(0.243)	(0.380)
		N _{sa}	lb	7,306	13,377	21,306	31,472	kN	37.7	54.8	95.8	145.8
		I V _{sa}	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	(lb)	(8,475)	(12,318)	(21,529)	(32,770)
닖		V _{sa}	lb	3,215	5,886	9,375	13,848	kN	16.6	24.1	42.2	64.2
STE		v _{sa}	(kN)	(14.3)	(26.2)	(41.7)	(61.6)	(lb)	(3,729)	(5,420)	(9,476)	(14,421)
RBON		$lpha_{V, seis}$	ı		0.	65		-		0.	65	
SA		φ	ī		0.	65		-		0.	65	
		φ	-		0.	60		-		0.	60	
		Δ/	lb	7,306	13,377	21,306	31,472	kN	37.7	54.8	95.8	145.8
	Nominal strength	N _{sa}	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	(lb)	(8,475)	(12,318)	(21,529)	(32,770)
STEEL	as governed by steel strength ¹		lb	4,384	8,026	12,783	18,883	kN	22.6	32.9	57.5	87.5
		V _{sa}	(kN)	(19.5)	(35.7)	(56.9)	(84.0)	(lb)	(5,085)	(7,391)	(12,922)	(19,666)
STAINLESS	Reduction for seismic shear	$lpha_{V, { m seis}}$	=	0.79	0.75	0.	65	-	0.79	0.75	0.	65
STAI	Strength reduction factor for tension ²	φ	-		0.	65		-		0.	65	
	Strength reduction factor for shear ²	φ	-		0.	60		-		0.	60	

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Steel properties are minimum values and maximum values will vary due to the cold forming of the rod. ² For use with the load combinations of ACI 318-19 and ACI 318-14 5.3 or ACI 318-11 9.2, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3.

Fractional and Metric HIT-Z and HIT-Z-R
Anchor Rod

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit or Diamond Core Bit

TABLE 8—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT HIT-Z AND HIT-Z-R ANCHOR ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) OR A CORE DRILL¹

DESIGN INFORMATION	Symb	Units	Nomi	inal Rod Dia	a. (in.) Frac	tional	Units	Noi	minal Rod D	Dia. (mm) M	etric	
DESIGN INFORMATION	ol	Units	3/8	1/2	5/8	3/4	Units	10	12	16	20	
Effectiveness factor for	l _k	in-lb		1	7		SI		7	' .1		
cracked concrete	k _{c,cr}	(SI)		(7	.1)		(in-lb)		(1	17)		
Effectiveness factor for	k	in-lb		2	4		SI		1	10		
uncracked concrete	K c,uncr	(SI)		(1	0)		(in-lb)		(2	24)		
Minimum embedment depth ³	h	in.	23/8	23/4	33/4	4	mm	60	70	96	100	
Millimani embeament deptir	h _{ef,min}	(mm)	(60)	(70)	(95)	(102)	(in.)	(2.4)	(2.8)	(3.8)	(3.9)	
Maximum embedment	h .	in.	41/2	6	71/2	81/2	mm	120	144	220		
depth ³	h _{ef,max}	(mm)	(114)	(152)	(190)	(216)	(in.)	(4.7)	(5.7)	, , , , ,		
Min. anchor spacing	Smin	-	Pre-cal	culated com	9.1 of this real	anchor	-	Pre-ca	See Section 4.1.9.1 of this report. e-calculated combinations of anchor			
Min. edge distance	Cmin	-	spacing an		ance are giv s report.	en in Table	-	spacing ar	en in Table			
Minimum concrete thickness	h _{min.1}	in.	h _{ef} +	· 2 ¹ / ₄	h _{ef}	+ 4	mm	h _{ef} -	+ 60	h _{ef} -	+ 100	
Hole condition 1 ³	THIIII, I	(mm)	(h _{ef} -	+ 57)	(h _{ef} +	102)	(in.)	(h _{ef} +	+ 2.4)	(h _{ef} -	+ 3.9)	
Minimum concrete thickness	h _{min.2}	in.	h _{ef} + 1	$^{1}/_{4} \ge 4$	h _{ef} +	· 1 ³ / ₄	mm	h _{ef} + 30	0 <u>></u> 100	h _{ef}	+ 45	
Hole condition 2 ³	rmiin,2	(mm)	(h _{ef} + 32	2 <u>≥</u> 100)	(h _{ef} -	+ 45)	(in.)	(h _{ef} + 1.2	25 <u>></u> 3.9)	(h _{ef} -	+ 1.8)	
Critical edge distance – splitting (for uncracked concrete)	Cac	-	See	Section 4.1.	10.1 of this I	eport	1	See	Section 4.1.	10.1 of this	report	
Strength reduction factor for tension, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-		0.	65		-		0.65			
Strength reduction factor for shear, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-		0.	70		-		0.	.70		

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.3 Borehole condition is described in Figure 4 below.

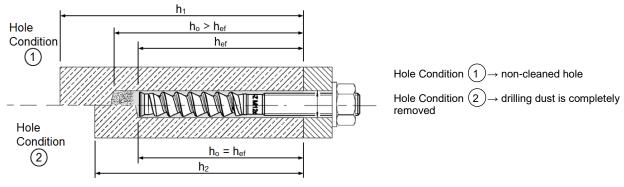


FIGURE 4—BOREHOLE SETTING CONDITIONS FOR HILTI HIT-Z AND HIT-Z-R ANCHOR RODS

¹ Additional setting information is described in Figure 6, Manufacturers Printed Installation Instructions (MPII).

TABLE 9—PRE-CALCULATED EDGE DISTANCE AND SPACING COMBINATIONS FOR HILTI HIT-Z AND HIT-Z-R RODS

DESI	GN INFORMATION	Symbol	Units			No	minal Rod	Diameter (iı	n.) – Fractio	nal			
Rod (D.D.	d	in. (mm)					³ / ₈ (9.5)					
Effect	tive embedment	h _{ef}	in. (mm)		2 ³ / ₈ (60)			3 ³ / ₈ (86)			4 ¹ / ₂ (114)		
Drille	d hole condition ¹	-	-	2	1 0	or 2	2	1 0	or 2	2	1 or 2		
Minim	num concrete thickness	h	in. (mm)	4 (102)	4 ⁵ / ₈ (117)	5 ³ / ₄ (146)	4 ⁵ / ₈ (117)	5 ⁵ / ₈ (143)	6 ³ / ₈ (162)	5 ³ / ₄ (146)	6 ³ / ₄ (171)	7 ³ / ₈ (187)	
Δ	Minimum edge and	Cmin, 1	in. (mm)	3 ¹ / ₈ (79)	2 ³ / ₄ (70)	2 ¹ / ₄ (57)	2 ³ / ₄ (70)	2 ¹ / ₄ (57)	2 (51)	2 ¹ / ₄ (57)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)	
CKE	spacing Case 1 ²	Smin, 1	in. (mm)	9 ¹ / ₈ (232)	7 ³ / ₄ (197)	6 ¹ / ₈ (156)	7 ³ / ₄ (197)	6 ¹ / ₂ (165)	5 ⁵ / ₈ (143)	6 ¹ / ₈ (156)	1 or 2 63/4 73/8 (171) (187) 17/8 17/8 (48) (48) 53/8 41/2 (137) (1144) 31/8 23/4 (79) (70) 17/8 17/8 (48) (48) 17/8 (48) (48) 2 17/8 (51) (48) (51) (48)	4 ¹ / ₂ (114)	
UNCRACKED		Cmin,2	in. (mm)	5 ⁵ / ₈ (143)	4 ³ / ₄ (121)	3 ³ / ₄ (95)	4 ³ / ₄ (121)	3 ⁷ / ₈ (98)	3 ¹ / ₄ (83)	3 ³ / ₄ (95)			
> °	spacing Case 2 ²	Smin,2	in. (mm)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)	-					
	Minimum edge and	C _{min, 1}	in. (mm)	2 ¹ / ₈ (54)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)			
XED	spacing Case 1 ²	Smin, 1	in. (mm)	6 ³ / ₈ (162)	5 ¹ / ₂ (140)	4 ¹ / ₄ (108)	5 ¹ / ₂ (140)	3 ¹ / ₂ (89)	2 ⁵ / ₈ (67)	3 ¹ / ₄ (83)			
CRACKED	Minimum edge and	Cmin,2	in. (mm)	3 ⁵ / ₈ (92)	3 ¹ / ₈ (79)	2 ³ / ₈ (60)	3 ¹ / ₈ (79)	2 ¹ / ₂ (64)	2 ¹ / ₈ (54)	2 ³ / ₈ (60)			
- 0	spacing Case 2 ²	S _{min,2}	in. (mm)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)	1 ⁷ / ₈ (48)				

DESI	GN INFORMATION	Symbol	Units			No	minal Rod I	Diameter (ir	ı.) – Fractio	nal		
Rod C).D.	d	in. (mm)					1/ ₂ (12.7)				
Effect	ive embedment	h _{ef}	in. (mm)		2- ³ / ₄ (70)			4 ¹ / ₂ (114)			6 (152)	
Drilled	d hole condition ¹	-	-	2	1 c	or 2	2	1 c	r 2	2	1 c	or 2
Minim	num concrete thickness	h	in. (mm)	4 (102)	5 (127)	7 ¹ / ₈ (181)	5 ³ / ₄ (146)	6 ³ / ₄ (171)	8 ¹ / ₄ (210)	7 ¹ / ₄ (184)	8 ¹ / ₄ (210)	9 ³ / ₄ (248)
Δ	Minimum edge and	Cmin, 1	in. (mm)	5 ¹ / ₈ (130)	4 ¹ / ₈ (105)	2 ⁷ / ₈ (73)	3 ⁵ / ₈ (92)	3 (76)	2 ¹ / ₂ (64)	$2^{7}/_{8}$ (73)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)
UNCRACKED	spacing Case 1 ²	S _{min, 1}	in. (mm)	14 ⁷ / ₈ (378)	11 ⁷ / ₈ (302)	8 ⁵ / ₈ (219)	10 ¹ / ₄ (260)	9 (229)	7 ¹ / ₄ (184)	8 ¹ / ₈ (206)	7 ¹ / ₄ (184)	5 (127)
NCR/	Minimum edge and	Cmin,2	in. (mm)	9 ¹ / ₄ (235)	7 ¹ / ₄ (184)	4 ⁷ / ₈ (124)	6 ¹ / ₄ (159)	5 ¹ / ₄ (133)	4 ¹ / ₈ (105)	4 ³ / ₄ (121)	4 ¹ / ₈ (105)	3 ³ / ₈ (86)
50	spacing Case 2 ²	Smin,2	in. (mm)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)
	Minimum edge and	Cmin, 1	in. (mm)	3 ⁵ / ₈ (92)	3 (76)	2 ¹ / ₂ (64)	2 ⁵ / ₈ (67)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)
XED RETE	spacing Case 1 ²	Smin, 1	in. (mm)	10 ⁷ / ₈ (276)	8 ¹ / ₂ (216)	6 (152)	7 ³ / ₈ (187)	5 ¹ / ₂ (140)	3 ¹ / ₈ (79)	4 ¹ / ₂ (114)	3 ¹ / ₈ (79)	2 ¹ / ₂ (64)
CRACKED	Minimum edge and	C _{min,2}	in. (mm)	6 ¹ / ₂ (165)	5 (127)	3 ¹ / ₄ (83)	4 ¹ / ₄ (108)	3 ¹ / ₂ (89)	2 ³ / ₄ (70)	3 ¹ / ₄ (83)	2 ³ / ₄ (70)	2 ¹ / ₂ (64)
. 0	spacing Case 2 ²	Smin,2	in. (mm)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)	2 ¹ / ₂ (64)

DESI	GN INFORMATION	Symbol	Units			No	minal Rod I	Diameter (ir	n.) – Fractio	nal		
Rod (O.D.	d	in. (mm)					⁵ / ₈ (15.9)				
Effect	tive embedment	h _{ef}	in. (mm)		3 ³ / ₄ (95)			5 ⁵ / ₈ (143)			7 ¹ / ₂ (191)	
Drille	d hole condition1	-	-	2	1 0	or 2	2	1 0	or 2	2	1 0	or 2
Minim	num concrete thickness	h	in. (mm)	5 ¹ / ₂ (140)	7 ³ / ₄ (197)	9 ³ / ₈ (238)	7 ³ / ₈ (187)	9 ⁵ / ₈ (244)	10 ¹ / ₂ (267)	9 ¹ / ₄ (235)	11 ¹ / ₂ (292)	12 ¹ / ₄ (311)
Δ	Minimum edge and	C _{min, 1}	in. (mm)	6 ¹ / ₄ (159)	4 ¹ / ₂ (114)	3 ³ / ₄ (95)	4 ⁵ / ₈ (117)	3 ⁵ / ₈ (92)	3 ¹ / ₄ (83)	3 ³ / ₄ (95)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)
UNCRACKED	spacing Case 1 ²	Smin, 1	in. (mm)	18 ³ / ₈ (467)	12 ⁷ / ₈ (327)	10 ⁵ / ₈ (270)	13 ⁷ / ₈ (352)	10 ³ / ₈ (264)	9 ³ / ₄ (248)	10 ⁷ / ₈ (276)	8 ³ / ₈ (213)	7 ³ / ₈ (187)
NCR/	Minimum edge and	C _{min,2}	in. (mm)	11 ³ / ₈ (289)	7 ³ / ₄ (197)	6 ¹ / ₄ (159)	8 ¹ / ₄ (210)	6 ¹ / ₈ (156)	5 ¹ / ₂ (140)	6 ³ / ₈ (162)	4 ⁷ / ₈ (124)	4 ⁵ / ₈ (117)
> °	spacing Case 2 ²	S _{min,2}	in. (mm)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)
	Minimum edge and	Cmin, 1	in. (mm)	4 ⁵ / ₈ (117)	3 ³ / ₈ (86)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)
KED	spacing Case 1 ²	S _{min, 1}	in. (mm)	13 ⁷ / ₈ (352)	9 ¹ / ₂ (241)	8 ³ / ₄ (222)	10 ¹ / ₈ (257)	6 ¹ / ₂ (165)	5 ³ / ₈ (137)	7 ¹ / ₈ (181)	3 ⁷ / ₈ (98)	3 ¹ / ₈ (79)
CRACKED	Minimum edge and	Cmin,2	in. (mm)	8 ¹ / ₄ (210)	5 ¹ / ₂ (140)	4 ³ / ₈ (111)	5 ⁷ / ₈ (149)	4 ¹ / ₄ (108)	3 ⁷ / ₈ (98)	4 ¹ / ₂ (114)	3 ³ / ₈ (86)	3 ¹ / ₈ (79)
30	spacing Case 2 ²	S _{min,2}	in. (mm)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)	3 ¹ / ₈ (79)

$$s \ge s_{min,2} + \frac{\left(s_{min,1} - s_{min,2}\right)}{\left(c_{min,1} - c_{min,2}\right)} \left(c - c_{min,2}\right)$$

For **SI**: 1 inch \equiv 25.4 mm

¹ See Figure 4 for description of drilled hole condition.

² Linear interpolation is permitted to establish an edge distance and spacing combination between case 1 and case 2.
Linear interpolation for a specific edge distance c, where $c_{min,1} < c < c_{min,2}$, will determine the permissible spacing, s, as follows: $s \ge s_{min,2} + \frac{\left(s_{min,1} - s_{min,2}\right)}{\left(c_{min,1} - c_{min,2}\right)} \left(c - c_{min,2}\right)$

TABLE 9—PRE-CALCULATED EDGE DISTANCE AND SPACING COMBINATIONS FOR HILTI HIT-Z AND HIT-Z-R RODS (Continued)

DESI	GN INFORMATION	Symbol	Units			No	minal Rod I	Diameter (ir	n.) – Fractio	nal		
Rod C	O.D.	d	in. (mm)					³ / ₄ (19.1)				
Effect	tive embedment	h _{ef}	in. (mm)		4 (102)			6 ³ / ₄ (171)			8 ¹ / ₂ (216)	
Drilled	d hole condition ¹	-	-	2	1 c	or 2	2	1 c	or 2	2	1 (or 2
Minim	num concrete thickness	h	in. (mm)	5 ³ / ₄ (146)	8 (203)	11 ¹ / ₂ (292)	8 ¹ / ₂ (216)	10 ³ / ₄ (273)	13 ¹ / ₈ (333)	10 ¹ / ₄ (260)	12 ¹ / ₂ (318)	14 ¹ / ₂ (368)
Δ	Minimum edge and	Cmin, 1	in. (mm)	9 ³ / ₄ (248)	7 (178)	5 (127)	6 ⁵ / ₈ (168)	5 ¹ / ₄ (133)	4 ¹ / ₄ (108)	5 ¹ / ₂ (140)	4 ¹ / ₂ (114)	4 (102)
CKE	spacing Case 1 ²	Smin, 1	in. (mm)	28 ³ / ₄ (730)	20 ⁵ / ₈ (524)	14 (356)	19 ³ / ₈ (492)	15 ¹ / ₄ (387)	12 ⁵ / ₈ (321)	16 (406)	13 ¹ / ₄ (337)	11 (279)
UNCRACKED	Minimum edge and	Cmin,2	in. (mm)	18 ¹ / ₈ (460)	12 ⁵ / ₈ (321)	8 ¹ / ₂ (216)	11 ⁷ / ₈ (302)	9 ¹ / ₈ (232)	7 ¹ / ₄ (184)	9 ⁵ / ₈ (244)	7 ³ / ₄ (197)	6 ¹ / ₂ (165)
> °	spacing Case 2 ²	Smin,2	in. (mm)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)
	Minimum edge and	C _{min, 1}	in. (mm)	7 ¹ / ₄ (184)	5 ¹ / ₄ (133)	4 ¹ / ₈ (105)	5 (127)	4 (102)	3 ³ / ₄ (95)	4 ¹ / ₈ (105)	3 ³ / ₄ (95)	3 ³ / ₄ (95)
XED	spacing Case 1 ²	Smin, 1	in. (mm)	21 ³ / ₄ (552)	15 ¹ / ₂ (394)	12 ¹ / ₄ (311)	14 ¹ / ₂ (368)	11 ³ / ₈ (289)	9 (229)	12 ¹ / ₈ (308)	8 ³ / ₄ (222)	6 ¹ / ₂ (165)
CRACKED	Minimum edge and	Cmin,2	in. (mm)	13 ¹ / ₄ (337)	9 ¹ / ₄ (235)	6 (152)	8 ⁵ / ₈ (219)	6 ⁵ / ₈ (168)	5 ¹ / ₈ (130)	7 (178)	5 ¹ / ₂ (140)	4 ¹ / ₂ (114)
	spacing Case 2 ²	S _{min,2}	in. (mm)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)	3 ³ / ₄ (95)

DESI	GN INFORMATION	Symbol	Units			N	ominal Rod	Diameter (mm) – Metr	ic		
Rod C).D.	d	mm (in.)					10 (0.39)				
Effect	ive embedment	h _{ef}	mm (in.)		60 (2.36)			90 (3.54)			120 (4.72)	
Drilled	d hole condition ¹	-	-	2	1 c	or 2	2	1 c	or 2	2	1 c	or 2
Minim	um concrete thickness	h	mm (in.)	100 (3.94)	120 (4.72)	156 (6.14)	120 (4.72)	150 (5.91)	176 (6.91)	150 (5.91)	180 (7.09)	197 (7.74)
Δ	Minimum edge and	Cmin, 1	mm (in.)	99 (3.90)	83 (3.27)	64 (2.52)	83 (3.27)	66 (2.60)	57 (2.24)	66 (2.60)	55 (2.17)	51 (2.01)
UNCRACKED	spacing Case 1 ²	S _{min, 1}	mm (in.)	295 (11.61)	244 (9.61)	187 (7.36)	244 (9.61)	197 (7.76)	166 (6.54)	197 (7.76)	164 (6.46)	148 (5.83)
NCR/	Minimum edge and	Cmin,2	mm (in.)	181 (7.13)	148 (5.83)	110 (4.33)	148 (5.83)	115 (4.53)	96 (3.78)	115 (4.53)	93 (3.66)	84 (3.31)
50	spacing Case 2 ²	Smin,2	mm (in.)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)
	Minimum edge and	Cmin, 1	mm (in.)	71 (2.80)	59 (2.32)	52 (2.05)	59 (2.32)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)
KED	spacing Case 1 ²	Smin, 1	mm (in.)	209 (8.23)	174 (6.85)	150 (5.91)	174 (6.85)	131 (5.16)	106 (4.17)	131 (5.16)	84 (3.31)	66 (2.60)
CRACKED	Minimum edge and	C _{min,2}	mm (in.)	124 (4.88)	101 (3.98)	74 (2.91)	101 (3.98)	77 (3.03)	64 (2.52)	77 (3.03)	62 (2.44)	55 (2.17)
	spacing Case 2 ²	Smin,2	mm (in.)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)

DESI	GN INFORMATION	Symbol	Units			N	ominal Rod	l Diameter (mm) – Metr	ic		
Rod (O.D.	d	mm (in.)					12 (0.47)				
Effect	tive embedment	h _{ef}	mm (in.)		70 (2.76)			108 (4.25)			144 (5.67)	
Drille	d hole condition ¹	-	-	2	1 c	or 2	2	1 0	or 2	2	1 (or 2
Minim	num concrete thickness	h	mm (in.)	100 (3.94)	130 (5.12)	184 (7.24)	138 (5.43)	168 (6.61)	209 (8.21)	174 (6.85)	204 (8.03)	234 (9.21)
	Minimum edge and	C _{min, 1}	mm (in.)	139 (5.47)	107 (4.21)	76 (2.99)	101 (3.98)	83 (3.27)	67 (2.64)	80 (3.15)	68 (2.68)	60 (2.36)
UNCRACKED	spacing Case 1 ²	Smin, 1	mm (in.)	416 (16.38)	320 (12.60)	225 (8.86)	300 (11.81)	247 (9.72)	199 (7.83)	239 (9.41)	204 (8.03)	176 (6.93)
NCR/	Minimum edge and	C _{min,2}	mm (in.)	258 (10.16)	194 (7.64)	131 (5.16)	181 (7.13)	146 (5.75)	114 (4.49)	140 (5.51)	116 (4.57)	99 (3.90)
50	spacing Case 2 ²	S _{min,2}	mm (in.)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)
	Minimum edge and	Cmin, 1	mm (in.)	101 (3.98)	78 (3.07)	62 (2.44)	74 (2.91)	61 (2.40)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)
KED	spacing Case 1 ²	S _{min, 1}	mm (in.)	303 (11.93)	232 (9.13)	186 (7.32)	217 (8.54)	178 (7.01)	126 (4.96)	168 (6.61)	117 (4.61)	79 (3.11)
CRACKED	Minimum edge and	Cmin,2	mm (in.)	182 (7.17)	136 (5.35)	90 (3.54)	127 (5.00)	101 (3.98)	77 (3.03)	96 (3.78)	79 (3.11)	67 (2.64)
- 0	spacing Case 2 ²	S _{min,2}	mm (in.)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)

$$s \ge s_{min,2} + \frac{(s_{min,1} - s_{min,2})}{(c_{min,1} - c_{min,2})}(c - c_{min,2})$$

For \$1: 1 inch $\equiv 25.4 \text{ mm}$ ¹ See Figure 4 for description of drilled hole condition.

² Linear interpolation is permitted to establish an edge distance and spacing combination between case 1 and case 2.

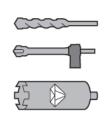
Linear interpolation for a specific edge distance c, where $c_{min,1} < c < c_{min,2}$, will determine the permissible spacing, s, as follows: $s \geq s_{min,2} + \frac{\left(s_{min,1} - s_{min,2}\right)}{\left(c_{min,1} - c_{min,2}\right)} \left(c - c_{min,2}\right)$

TABLE 9—PRE-CALCULATED EDGE DISTANCE AND SPACING COMBINATIONS FOR HILTI HIT-Z AND HIT-Z-R RODS (Continued)

DESI	GN INFORMATION	Symbol	Units			N	ominal Rod	l Diameter (mm) – Metr	ic		
Rod C	O.D.	d	mm (in.)					16 (0.63)				_
Effect	tive embedment	h _{ef}	mm (in.)		96 (3.78)			144 (5.67)			192 (7.56)	_
Drilled	d hole condition ¹	-	-	2	1 c	or 2	2	1 0	or 2	2	1 (or 2
Minim	num concrete thickness	h	mm (in.)	141 (5.55)	196 (7.72)	237 (9.33)	189 (7.44)	244 (9.61)	269 (10.57)	237 (9.33)	292 (11.50)	312 (12.28)
٠	Minimum edge and	Cmin, 1	mm (in.)	158 (6.22)	114 (4.49)	94 (3.70)	118 (4.65)	92 (3.62)	83 (3.27)	94 (3.70)	80 (3.15)	80 (3.15)
ACKE RETE	spacing Case 1 ²	Smin, 1	mm (in.)	473 (18.62)	339 (13.35)	281 (11.06)	352 (13.86)	271 (10.67)	248 (9.76)	281 (11.06)	217 (8.54)	188 (7.40)
UNCRACKED	Minimum edge and	Cmin,2	mm (in.)	289 (11.38)	201 (7.91)	161 (6.34)	209 (8.23)	156 (6.14)	139 (5.47)	161 (6.34)	126 (4.96)	116 (4.57)
50	spacing Case 2 ²	Smin,2	mm (in.)	80 (3.15)								
	Minimum edge and	C _{min, 1}	mm (in.)	116 (4.57)	83 (3.27)	80 (3.15)	86 (3.39)	80 (3.15)	80 (3.15)	80 (3.15)	80 (3.15)	80 (3.15)
KED	spacing Case 1 ²	Smin, 1	mm (in.)	343 (13.50)	248 (9.76)	211 (8.31)	258 (10.16)	160 (6.30)	129 (5.08)	171 (6.73)	94 (3.70)	81 (3.19)
CRACKED CONCRETE	Minimum edge and	Cmin,2	mm (in.)	204 (8.03)	139 (5.47)	111 (4.37)	146 (5.75)	107 (4.21)	95 (3.74)	111 (4.37)	85 (3.35)	80 (3.15)
	spacing Case 2 ²	S _{min,2}	mm (in.)	80 (3.15)								

DESI	GN INFORMATION	Symbol	Units			N	ominal Rod	Diameter (mm) – Metr	ic		
Rod C).D.	d	mm (in.)					20 (0.79)				
Effect	ive embedment	h _{ef}	mm (in.)		100 (3.94)			180 (7.09)			220 (8.66)	
Drilled	d hole condition ¹	-	-	2	1 0	or 2	2	1 0	or 2	2	1 0	or 2
Minim	um concrete thickness	h	mm (in.)	145 (5.71)	200 (7.87)	282 (11.08)	225 (8.86)	280 (11.02)	335 (13.17)	265 (10.43)	320 (12.60)	370 (14.57)
	Minimum edge and	Cmin, 1	mm (in.)	235 (9.25)	170 (6.69)	121 (4.76)	152 (5.98)	122 (4.80)	103 (4.06)	129 (5.08)	107 (4.21)	100 (3.94)
CKE	spacing Case 1 ²	S _{min, 1}	mm (in.)	702 (27.64)	511 (20.12)	362 (14.25)	451 (17.76)	363 (14.29)	301 (11.85)	383 (15.08)	317 (12.48)	252 (9.92)
UNCRACKED	Minimum edge and	Cmin,2	mm (in.)	436 (17.17)	307 (12.09)	209 (8.23)	269 (10.59)	210 (8.27)	170 (6.69)	224 (8.82)	180 (7.09)	151 (5.94)
50	spacing Case 2 ²	Smin,2	mm (in.)	100 (3.94)								
	Minimum edge and	Cmin, 1	mm (in.)	176 (6.93)	128 (5.04)	102 (4.02)	114 (4.49)	100 (3.94)	100 (3.94)	100 (3.94)	100 (3.94)	100 (3.94)
KED	spacing Case 1 ²	Smin, 1	mm (in.)	526 (20.71)	380 (14.96)	298 (11.73)	337 (13.27)	246 (9.69)	163 (6.42)	277 (10.91)	178 (7.01)	113 (4.45)
CRACKED CONCRETE	Minimum edge and	C _{min,2}	mm (in.)	318 (12.52)	222 (8.74)	148 (5.83)	193 (7.60)	149 (5.87)	119 (4.69)	159 (6.26)	126 (4.96)	105 (4.13)
	spacing Case 2 ²	Smin,2	mm (in.)	100 (3.94)								

For **SI**: 1 inch ≡ 25.4 mm


$$s \ge s_{min,2} + \frac{(s_{min,1} - s_{min,2})}{(c_{min,1} - c_{min,2})}(c - c_{min,2})$$

¹ See Figure 4 for description of drilled hole condition.

² Linear interpolation is permitted to establish an edge distance and spacing combination between case 1 and case 2. Linear interpolation for a specific edge distance c, where $c_{min,1} < c < c_{min,2}$, will determine the permissible spacing, s, as follows: $s \ge s_{min,2} + \frac{\left(s_{min,1} - s_{min,2}\right)}{\left(c_{min,1} - c_{min,2}\right)} \left(c - c_{min,2}\right)$

Fractional and Metric HIT-Z and HIT-Z-R
Anchor Rod

Pullout Strength

Carbide Bit or Hilti Hollow Carbide Bit or Diamond Core Bit

TABLE 10—PULLOUT STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIT-Z AND HIT-Z-R RODS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) OR A CORE DRILL¹

DECION	DESIGN INFORMATION	Comple al	l luita	Nomin	al Rod Dia	a. (in.) Fra	ctional	Units	Non	ninal Rod D	ia. (mm) M	etric
DESIGN	INFORMATION	Symbol	Units	3/8	1/2	5/8	3/4	Units	10	12	16	20
Minimum	n embedment	h	in.	2 ³ / ₈	23/4	33/4	4	mm	60	70	96	100
depth		h _{ef,min}	(mm)	(60)	(70)	(95)	(102)	(in.)	(2.4)	(2.8)	(3.8)	(3.9)
	m embedment	h _{ef,max}	in.	41/2	6	71/2	81/2	mm	120	144	192	220
depth		r ei,max	(mm)	(114)	(152)	(190)	(216)	(in.)	(4.7)	(5.7)	(7.6)	(8.7)
ø)	Pullout strength	.,	lb	7,952	10,936	21,391	27,930	kN	39.1	43.8	98.0	127.9
erature le A²	in cracked concrete	$N_{p,cr}$	(kN)	(35.4)	(48.6)	(95.1)	(124.2)	(lb)	(8,790)	(9,847)	(22,032)	(28,754)
Temperature range A ²	Pullout strength in uncracked	M	lb	7,952	11,719	21,391	28,460	kN	39.1	46.9	98.0	130.3
	concrete	$N_{p,uncr}$	(kN)	(35.4)	(52.1)	(95.1)	(126.6)	(lb)	(8,790)	(10,545)	(22,028)	(29,293)
ø	Pullout strength in cracked	N _{p,cr}	lb	7,952	10,936	21,391	27,930	kN	39.1	43.8	98.0	127.9
Temperature range B²	concrete	I V _{p,cr}	(kN)	(35.4)	(48.6)	(95.1)	(124.2)	(lb)	(8,790)	(9,847)	(22,032)	(28,754)
empe	Pullout strength in uncracked	M	lb	7,952	11,719	21,391	28,460	kN	39.1	46.9	98.0	130.3
	concrete	N _{p,uncr}	(kN)	(35.4)	(52.1)	(95.1)	(126.6)	(lb)	(8,790)	(10,545)	(22,028)	(29,293)
Φ	Pullout strength in cracked	N _{p.cr}	lb	7,182	9,877	19,321	25,227	kN	35.3	39.5	88.5	115.5
Temperature range C ²	concrete	I Vp,cr	(kN)	(31.9)	(43.9)	(85.9)	(112.2)	(lb)	(7,936)	(8,880)	(19,897)	(25,967)
emperang	Pullout strength in uncracked	M	lb	7,182	10,585	19,321	25,705	kN	35.3	42.4	88.5	117.7
	concrete	N _{p,uncr}	(kN)	(31.9)	(47.1)	(85.9)	(114.3)	(lb)	(7,936)	(9,532)	(19,897)	(26,461)
Permissible installation conditions	Dry concrete, water saturated concrete	Anchor Category	-			1		-			1	
Permi instal cond		ϕ_d , ϕ_{ws}	-		0.	65		-		0.	65	
Reduction tension	Reduction for seismic tension		-	0.94		1.0		-	1.0	0.89	1	.0

For SI: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).
Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).
Temperature range C: Maximum short term temperature = 248°F (120°C), Maximum long term temperature = 162°F (72°C).
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Threaded Rod

Steel Strength

TABLE 11—STEEL DESIGN INFORMATION FOR FRACTIONAL THREADED ROD

DESIGN	INFORMATION	Symbol	Units			Nomin	al rod diamet	er (in.)1		
DESIGN	INFORMATION	Symbol	Units	3/8	1/2	5/8	3/4	7 / 8	1	11/4
D = 4 O D	.	a	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Rod O.D	<i>)</i> .	d	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)
Dod offo	ective cross-sectional area	Λ	in. ²	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0.9691
Rod elle	ective cross-sectional area	A _{se}	(mm ²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)
		Α.,	lb	5,620	10,290	16,385	24,250	33,470	43,910	70,260
	Nominal strength as governed by steel	N _{sa}	(kN)	(25.0)	(45.8)	(72.9)	(107.9)	(148.9)	(195.3)	(312.5)
8-1 5.8	strength	17	Ìb	3,370	6,175	9,830	14,550	20,085	26,345	42,155
83 SS		V _{sa}	(kN)	(15.0)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)
ISO 898-1 Class 5.8	Reduction for seismic shear	αv,seis	-			•	1.00			
<u> </u>	Strength reduction factor ϕ for tension ²	φ	-				0.65			
	Strength reduction factor ϕ for shear ²	φ	-				0.60			
	,	Α,	lb	9,685	17,735	28,250	41,810	57,710	75,710	121,135
B7	Nominal strength as governed by steel	N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
93	strength		Ìb	5,810	10,640	16,950	25,085	34,625	45,425	72,680
ASTM A193 B7		V _{sa}	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
Σ	Reduction for seismic shear	αv,seis	-	, ,			1.00		, , ,	
LS\	Strength reduction factor ϕ for tension ²	φ	_				0.75			
4	Strength reduction factor ϕ for shear ²	φ	-				0.65			
	, , , , , , , , , , , , , , , , , , , ,	<i>'</i>	lb	-	8,230	13,110	19,400	26,780	35,130	56,210
7.7	Nominal strength as governed by steel	N _{sa}	(kN)	-	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)	(250.0)
155 6	strength	17	Ìb	-	4,940	7,865	11,640	16,070	21,080	33,725
<u>π</u> .	_	V _{sa}	(kN)	-	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)	(150.0)
ASTM F1554 Gr. 36	Reduction factor, seismic shear	$lpha_{v,seis}$	-				0.6			
AS	Strength reduction factor ϕ for tension ²	φ	-				0.75			
	Strength reduction factor ϕ for shear ²	φ	-				0.65			
		N _{sa}	lb	-	10,645	16,950	25,090	34,630	45,430	72,685
42	Nominal strength as governed by steel	I Vsa	(kN)	-	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
15.	strength	V _{sa}	lb	-	6,385	10,170	15,055	20,780	27,260	43,610
ASTM F1554 Gr. 55		V 58	(kN)	-	(28.4)	(45.2)	(67.0)	(92.4)	(121.3)	(194.0)
ĔΘ	Reduction factor, seismic shear	αν,seis	-				1.00			
¥	Strength reduction factor ϕ for tension ²	ϕ	-				0.75			
	Strength reduction factor ϕ for shear ²	ϕ	-				0.65			
		N _{sa}	lb	-	17,740	28,250	41,815	57,715	75,715	121,135
45	Nominal strength as governed by steel	1 V3d	(kN)	-	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
-15 05	strength	V _{sa}	lb "…"	-	10,645	16,950	25,090	34,630	45,430	72,680
Σ.			(kN)	-	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
ASTM F1554 Gr. 105	Reduction factor, seismic shear	αν,seis	-				1.00			
⋖	Strength reduction factor ϕ for tension ²	φ	-				0.75			
	Strength reduction factor ϕ for shear ²	φ	-	7.750	14400	00.000	0.65	00.045	54.405	1
≥	Ni	N _{sa}	lb (IAN)	7,750	14,190	22,600	28,435	39,245	51,485 (229.0)	-
o, s	Nominal strength as governed by steel strength		(kN)	(34.5) 4,650	(63.1) 8,515	(100.5) 13,560	(126.5) 17,060	(174.6) 23,545	30,890	-
593 les	Strength	V _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	-
'M F593, Stainless	Reduction factor, seismic shear	α .	(KIN)	(20.7)	(37.9)		.80	(104.7)	(137.4)	
≥ِن	Strength reduction factor ϕ for tension ²	αν,seis φ					.65			
ASTM F593, CW Stainless	Strength reduction factor ϕ for shear ²	φ	-	 			.60			
		,	- Ib				-			55,240
<u>.</u> –	Nominal strength as governed by steel	N _{sa}	(kN)				_			(245.7)
3, C	strength		lb				-			33.145
19; les		V _{sa}	(kN)				_			(147.4)
ASTM A193, Gr. 8(M), Class 1 Stainless	Reduction factor, seismic shear	αν,seis	- (KI4)				-			0.80
ĮΣΩ	Strength reduction factor ϕ for tension ²	φ	_				-			0.75
AS 8	Strength reduction factor ϕ for shear ²		_				_			0.65
	Suengui reduction factor ϕ for snear 2	ϕ	-				-			0.05

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf

¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b), ACI 318-14 Eq. (17.4.1.2) and Eq. (17.6.1.2b) or ACI 318-14 Eq. (D.2). Nuts and weathers must be appropriate for the rod.

ACI 318-14 Eq. (17.4.1.2) and Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers must be appropriate for the rod.

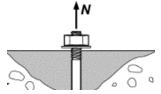
The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

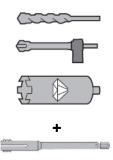
Fractional Reinforcing Bars

Steel Strength

TABLE 11A—STEEL DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS

EN INFORMATION	Symbol	Unite			Nomina	I Reinforci	ng bar size	(Rebar)		
SIN INFORMATION	Syllibol	Ullits	#3	#4	#5	#6	#7	#8	#9	#10
al bar diameter	d	in. (mm)	³ / ₈ (9.5)	1/ ₂ (12.7)	⁵ / ₈ (15.9)	³ / ₄ (19.1)	⁷ / ₈ (22.2)	1 (25.4)	1 ¹ / ₈ (28.6)	1 ¹ / ₄ (31.8)
fective cross-sectional area	A _{se}	in.² (mm²)	0.11 (71)	0.2 (129)	0.31 (200)	0.44 (284)	0.6 (387)	0.79 (510)	1.0 (645)	1.27 (819)
Nominal strength as	N _{sa}	lb (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	36,000 (160.1)	47,400 (210.9)	60,000 (266.9)	76,200 (339.0)
governed by steel strength	V _{sa}	lb (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5)	21,600 (96.1)	28,440 (126.5)	36,000 (160.1)	45,720 (203.4)
Reduction for seismic shear	$lpha_{V,seis}$	-				0.	70			
Strength reduction factor ϕ for tension ²	φ					0.	65			
Strength reduction factor ϕ for shear ²	φ	ı				0.	60			
Nominal strength as	N _{sa}	lb (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,600 (451.9)
governed by steel strength	V _{sa}	lb (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (93.9)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)
Reduction for seismic shear	αv,seis	-				0.	70			
Strength reduction factor ϕ for tension ²	φ	-				0.	65			
Strength reduction factor ϕ for shear ²	φ	ı				0.	60			
Nominal strength as	N _{sa}	lb (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,600 (452.0)
governed by steel strength	V _{sa}	lb (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (94.0)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)
Reduction for seismic shear	$lpha_{V,seis}$					0.	70			
Strength reduction factor ϕ for tension ²	φ					0.	75			
Strength reduction factor ϕ for shear ²	φ			-	-	0.	65	-	-	
	Reduction for seismic shear Strength reduction factor φ for tension² Strength reduction factor φ for shear² Nominal strength as governed by steel strength Reduction for seismic shear Strength reduction factor φ for shear² Nominal strength as governed by steel strength Reduction for seismic shear Strength reduction factor φ for tension² Strength reduction factor φ for shear² Nominal strength as governed by steel strength Reduction for seismic shear Strength reduction factor φ for tension² Strength reduction factor φ for tension² Strength reduction factor φ for tension²	rective cross-sectional area Nominal strength as governed by steel strength Reduction for seismic shear Strength reduction factor ϕ for tension ² Strength reduction factor ϕ for shear ² Nominal strength as governed by steel strength Reduction for seismic shear Strength reduction factor ϕ for shear ² Reduction for seismic shear Strength reduction factor ϕ for tension ² Strength reduction factor ϕ for shear ² Nominal strength as governed by steel strength Reduction for seismic shear Strength reduction factor ϕ for shear ² Nominal strength as governed by steel strength Reduction for seismic shear Strength reduction factor ϕ for tension ² Strength reduction factor ϕ	fective cross-sectional area A _{se} In. (mm) in. 2 (mm²) Nominal strength as governed by steel strength Reduction for seismic shear Strength reduction factor ϕ for tension² Strength reduction factor ϕ for shear² Nominal strength as governed by steel strength Reduction for seismic shear A_{se} Ib (kN) Reduction for seismic shear $\alpha_{V,seis}$ Nominal strength as governed by steel strength Reduction for seismic shear Strength reduction factor ϕ for tension² Strength reduction factor ϕ for shear² Nominal strength as governed by steel strength Reduction for seismic shear $\alpha_{V,seis}$ - Strength reduction factor ϕ for shear² Nominal strength as governed by steel strength Reduction for seismic shear $\alpha_{V,seis}$ Strength reduction factor ϕ for tension² Strength reduction factor ϕ for tension²	tective cross-sectional area A_{se} in. $\frac{3}{8}$ (9.5) fective cross-sectional area A_{se} in. $\frac{2}{(mm^2)}$ (71) Nominal strength as governed by steel strength V_{sa} lb 6,600 (kN) (29.4) Reduction for seismic shear $\alpha_{V,seis}$ - Strength reduction factor ϕ for tension $\frac{2}{2}$ Strength reduction factor ϕ for shear $\frac{2}{2}$ Nominal strength as governed by steel strength V_{sa} lb 8,800 (xN) (39.1) Reduction for seismic shear $\alpha_{V,seis}$ - Strength reduction factor ϕ for tension $\frac{2}{2}$ Strength reduction factor ϕ for tension $\frac{2}{2}$ Strength reduction factor ϕ for shear $\frac{2}{2}$ Nominal strength as governed by steel strength $\frac{2}{2}$ Nominal strength as governed by steel strength $\frac{2}{2}$ Nominal strength as governed by steel strength $\frac{2}{2}$ Reduction for seismic shear $\frac{2}{2}$ Nominal strength as governed by steel strength $\frac{2}{2}$ Reduction for seismic shear $\frac{2}{2}$ Strength reduction factor ϕ for tension $\frac{2}{2}$ Strength reduction factor ϕ f	the particle of the particle	Symbol Symbol	Symbol Units #3 #4 #5 #6	Symbol Units #3 #4 #5 #6 #7 #7 #7 #7 #7 #7 #7	Strength reduction factor φ for shear² V _{sal} V _{sa}	Symbol Units #3


For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf


¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq (17.7.1.2b),

ACI 318-14 Eq. (17.4.1.2) and Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers must be appropriate for the rod.

The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

Fractional Threaded Rod and Reinforcing Bars

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit or Diamond Core Bit with Roughening Tool

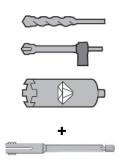
TABLE 12—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) OR CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

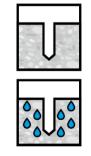
				N	ominal rod	diameter (i	n.) / Reinfo	rcing bar si	ze	
DESIGN INFORMATION	Symbol	Units	³ / ₈ or #3	¹ / ₂ or #4	⁵ / ₈ or #5	³/₄ or #6	⁷ / ₈ or #7	1 or #8	#9	1 ¹ / ₄ or #10
Effectiveness factor for	4	in-lb				1	17			
cracked concrete	k _{c,cr}	(SI)				(7	'.1)			
Effectiveness factor for	k _{c.uncr}	in-lb				2	24			
uncracked concrete	∧ c,uncr	(SI)				(1	10)			
Minimum Embedment	h	in.	2 ³ / ₈	23/4	31/8	31/2	31/2	4	41/2	5
Williman Embeament	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
Maximum Embedment	h	in.	71/2	10	121/2	15	171/2	20	221/2	25
Maximum Embedment	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
Min. anahar anaaina3		in.	1 ⁷ / ₈	21/2	3 ¹ / ₈	33/4	43/8	5	5 ⁵ / ₈	6 ¹ / ₄
Min. anchor spacing ³	S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
Min. edge distance (Threaded rods)		in.	1¾	1¾	2 (3)	21/8 (3)	21/4 (3)	2¾ (3)	- 1-	31/8 (3)
	C _{min}	(mm)	(45)	(45)	(50) ⁽³⁾	(55) ⁽³⁾	(60) ⁽³⁾	(70) ⁽³⁾	n/a	(80) ⁽³⁾
Min. edge distance (Reinforcing bars) ³	C _{min}	-	5d; or se	e Section 4.	1.9.2 of this	report for c	lesign with re	educed min	imum edge	distances
Minimum concrete thickness	h	in.	h _{ef} +	+ 1 ¹ / ₄			h _{ef} +	24 (4)		
Willimum concrete thickness	h _{min}	(mm)	(h _{ef} -	+ 30)			H _{ef} +	2 u ₀ , ,		
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-			See S	Section 4.1.	10.2 of this r	eport.		
Strength reduction factor for tension, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-	0.65							
Strength reduction factor for shear, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-	0.70							

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Additional setting information is described in Figure 6, Manufacturers Printed Installation Instructions (MPII).

² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

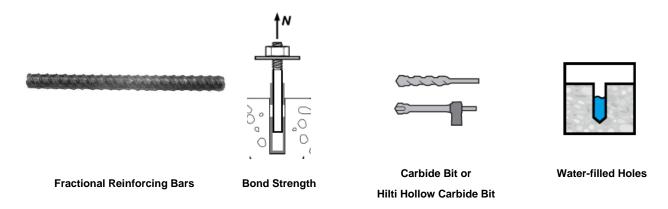

³ For installations with 1³/₄-inch edge distance, refer to Section 4.1.9.2 for spacing and maximum torque requirements.


⁴ d_0 = hole diameter.

Strength

Carbide Bit or Hilti Hollow Carbide Bit or **Diamond Core Bit with Roughening Tool**

Dry and Water Saturated Concrete


TABLE 13—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) OR CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

						Non	ninal rein	forcing b	ar size		
DESIGN	INFORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Minimun	n Embedment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	4 ¹ / ₂ (114)	5 (127)
Maximu	m Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	22 ¹ / ₂ (572)	25 (635)
ature A²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (MPa)	1,080 (7.4)	1,080 (7.4)	1,090 (7.5)	1,090 (7.5)	835 (5.7)	840 (5.8)	850 (5.9)	850 (5.9)
Temperature range A ²	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (MPa)	1,560 (10.8)	1,560 (10.8)	1,560 (10.8)	1,560 (10.8)	1,560 (10.8)	1,560 (10.8)	1,560 (10.8)	1,560 (10.8)
Temperature range B ²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (MPa)	1,080 (7.4)	1,080 (7.4)	1,090 (7.5)	1,090 (7.5)	835 (5.7)	840 (5.8)	850 (5.9)	850 (5.9)
Tempe	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (MPa)	1,560 (10.8)	1,560 (10.8)	1,560 (10.8)	1,560 (10.8)	1,560 (10.8)	1,560 (10.8)	1,560 (10.8)	1,560 (10.8)
Temperature range C ²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (MPa)	885 (6.1)	890 (6.1)	895 (6.2)	895 (6.2)	685 (4.7)	690 (4.8)	700 (4.8)	700 (4.8)
Tempe	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (MPa)	1,280 (8.8)	1,280 (8.8)	1,280 (8.8)	1,280 (8.8)	1,280 (8.8)	1,280 (8.8)	1,280 (8.8)	1,280 (8.8)
Permissible installation conditions	Dry concrete and water saturated concrete	Anchor Category	-					1			
Perm insta con		φ _d , φ _{ws}	-				().65			
for seismic sion	Hammer drilled	$lpha_{N,seis}$	-		0.	80		0.85	0.90	0.95	1.0
Reduction for seismic tension	Core drilled + roughening	α _{N,seis}	-	N	/A	0.71	0.77	0.82	0.95	0.79	0.83

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

 $^{^{1}}$ Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa). MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

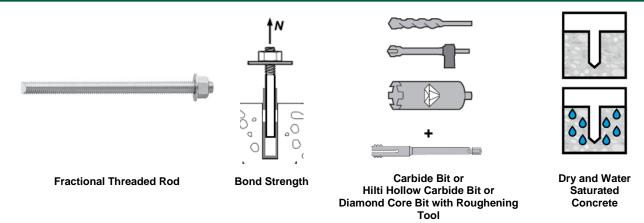
² Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C). Temperature range C: Maximum short term temperature = 248°F (120°C), Maximum long term temperature = 162°F (72°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 14—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)

DESIGN	LINEODMATION	Complete	Harlton			Non	ninal rein	forcing b	ar size		
DESIGN	INFORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Minimun	n Embedment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	4 ¹ / ₂ (114)	5 (127)
Maximur	m Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	22 ¹ / ₂ (572)	25 (635)
rature e A²	Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete		psi (MPa)	1,050 (7.2)	1,050 (7.2)	1,070 (7.4)	1,070 (7.4)	820 (5.7)	820 (5.7)	830 (5.7)	830 (5.7)
Tempe	Characteristic bond strength in uncracked concrete		psi (MPa)	1,520 (10.5)	1,520 (10.5)	1,520 (10.5)	1,520 (10.5)	1,520 (10.5)	1,520 (10.5)	1,520 (10.5)	1,520 (10.5)
rature e B²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (MPa)	1,050 (7.2)	1,050 (7.2)	1,070 (7.4)	1,070 (7.4)	820 (5.7)	820 (5.7)	830 (5.7)	830 (5.7)
Temperature range B²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (MPa)	1,520 (10.5)	1,520 (10.5)	1,520 (10.5)	1,520 (10.5)	1,520 (10.5)	1,520 (10.5)	1,520 (10.5)	1,520 (10.5)
rature e C²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (MPa)	865 (6.0)	865 (6.0)	875 (6.1)	875 (6.1)	670 (4.6)	680 (4.7)	680 (4.7)	680 (4.7)
Temperature range C ²	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (MPa)	1,250 (8.6)	1,250 (8.6)	1,250 (8.6)	1,250 (8.6)	1,250 (8.6)	1,250 (8.6)	1,250 (8.6)	1,250 (8.6)
Permissible installation conditions	Water-filled Holes	Anchor Category	-					3			
Perm insta con	U	ϕ_{wt}	-				().45			
Reduction for seismic	Hammer drilled	$lpha_{ extsf{N}, ext{seis}}$	-		0.3	80		0.85	0.90	0.95	1.0

For SI: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/1,2,500)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.


^{27.20} j. See Section 4.1.4 of this report to bord strength determination.

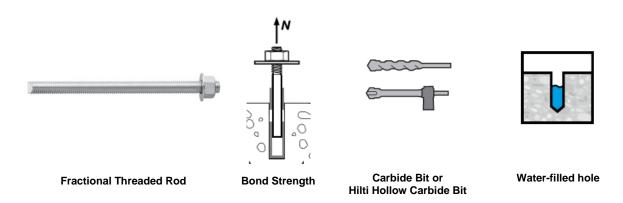
27.21 Emperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Temperature range C: Maximum short term temperature = 248°F (120°C), Maximum long term temperature = 162°F (72°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 15—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) OR CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL


	DESIGN INFORMATION					Nomin	al rod diame	ter (in.)		
DESIGN	INFORMATION	Symbol	Units	³/ ₈	1/2	⁵ / ₈	3/4	⁷ / ₈	1	1 ¹ / ₄
Minimum	n Embedment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	5 (127)
Maximur	m Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (635)
ature A²	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (MPa)	1,045 (7.2)	1,135 (7.8)	1,170 (8.1)	1,260 (8.7)	1,290 (8.9)	1,325 (9.1)	1,380 (9.5)
Temperature range A²	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (MPa)	2,220 (15.3)	2,220 (15.3)	2,220 (15.3)	2,220 (15.3)	2,220 (15.3)	2,220 (15.3)	2,220 (15.3)
	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (MPa)	1,045	1,135	1,170	1,260	1,290 (8.9)	1,325	1,380
Temperature range B²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (MPa)	2,220 (15.3)	2,220 (15.3)	2,220 (15.3)	2,220 (15.3)	2,220 (15.3)	2,220 (15.3)	2,220 (15.3)
ature C ²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (MPa)	855 (5.9)	930 (6.4)	960 (6.6)	1,035 (7.1)	1,055	1,085 (7.5)	1,130 (7.8)
Temperature range C ²	Characteristic bond strength in uncracked concrete	Tk,uncr	psi (MPa)	1,820 (12.6)	1,820 (12.6)	1,820 (12.6)	1,820 (12.6)	1,820 (12.6)	1,820 (12.6)	1,820 (12.6)
Permissible installation conditions	Dry and water saturated concrete	Anchor Category	-				1			
Perm insta conc		$\phi_{ m d}$, $\phi_{ m ws}$	-				0.65			
or seismic ion	Hammer drilled	$lpha_{N,seis}$	-	0.88	0.99	0.99	1.0	1.0	0.95	0.99
Reduction for seismic tension	Core drilled + roughening	$lpha_{ extsf{N}, ext{seis}}$	-	N	/A	0.88	0.96	0.96	1.0	0.82

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'_c /2,500)^{0.1} [For SI: (f'_c /17.2)^{0.1}]. See Section 4.1.4 of this report for bond strength determination.

² Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C). Temperature range C: Maximum short term temperature = 248°F (120°C), Maximum long term temperature = 162°F (72°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 16—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)

						Nomina	al rod diame	ter (in.)		
DESIGN	INFORMATION	Symbol	Units	³ / ₈	1/2	⁵ / ₈	3/4	⁷ / ₈	1	1 ¹ / ₄
Minimun	n Embedment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	5 (127)
Maximu	m Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (635)
ature A²	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (MPa)	825 (5.7)	875 (6.0)	865 (6.0)	910 (6.3)	890 (6.1)	885 (6.1)	840 (5.8)
Temperature range A²	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (MPa)	1,755	1,710	1,645	1,600	1,535	1,490 (10.3)	1,355
-	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (MPa)	825 (5.7)	875 (6.0)	865 (6.0)	910 (6.3)	890 (6.1)	885 (6.1)	840 (5.8)
Temperature range B²	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (MPa)	1,755 (12.1)	1,710 (11.8)	1,645 (11.3)	1,600 (11.0)	1,535 (10.6)	1,490 (10.3)	1,355 (9.3)
rature e C²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi (MPa)	675 (4.7)	715 (4.9)	710 (4.9)	745 (5.1)	730 (5.0)	730 (5.0)	690 (4.8)
Temperature range C ²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (MPa)	1,440 (9.9)	1,405 (9.7)	1,350 (9.3)	1,310 (9.0)	1,260 (8.7)	1,220 (8.4)	1,110 (7.7)
Permissible installation conditions	Water-filled hole	Anchor Category	=				3			
		ϕ_{wf}	-				0.45			
Reduction for seismic tension	Hammer drilled	$lpha_{ m N,seis}$	-	0.88	0.99	0.99	1.0	1.0	0.95	0.99

For SI: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

^{4.1.4} of this report for bond strength determination.

² Temperature range A: Maximum short-term temperature = 130°F (55°C), Maximum long-term temperature = 110°F (43°C).

Temperature range B: Maximum short-term temperature = 176°F (80°C), Maximum long-term temperature = 110°F (43°C).

Temperature range C: Maximum short-term temperature = 248°F (120°C), Maximum long-term temperature = 162°F (72°C).

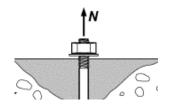
short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. long-term concrete temperatures are roughly constant over significant periods of time.

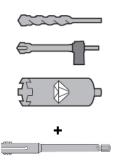
Metric Threaded Rod and EU Metric **Reinforcing Bars**

Steel Strength

TABLE 17—STEEL DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS

DESI	SN INFORMATION	Symbol	Units			N	ominal rod o	liameter (n	nm)¹		
DESI	3N INFORMATION	Symbol	Ullits	10	12	16	2	20	24	27	30
Pod C	Outside Diameter	d	mm	10	12	16	2	20	24	27	30
1100 C	ruiside Diametei	u	(in.)	(0.39)	(0.47)	(0.63	3) (0.	79)	(0.94)	(1.06)	(1.18)
Pod o	ffective cross-sectional area	Ase	mm ²	58.0	84.3	157	2	45	353	459	561
Kou e	nective cross-sectional area	Ase	(in. ²)	(0.090)	(0.131)	(0.24	3) (0.3	380)	(0.547)	(0.711)	(0.870)
		M	kN	29.0	42.0	78.	5 12	2.5	176.5	229.5	280.5
	Nominal strength as governed by	N _{sa}	(lb)	(6,519)	(9,476)	(17,64	17) (27,	539)	(39,679)	(51,594)	(63,059)
8-1 5.8	steel strength	V _{sa}	kN	14.5	25.5	47.0	7:	3.5	106.0	137.5	168.5
89 88		Vsa	(lb)	(3,260)	(5,685)	(10,58	38) (16,	523)	(23,807)	(30,956)	(37,835)
ISO 898-1 Class 5.8	Reduction for seismic shear	αv,seis	-				1.	00			
	Strength reduction factor for tension ²	φ	-				0.	65			
	Strength reduction factor for shear ²	φ	-				0.	60			
		N _{sa}	kN	46.5	67.5	125.	5 19	6.0	282.5	367.0	449.0
	Nominal strength as governed by		(lb)	(10,431)	(15,161	(28,23	36) (44,	063)	(63,486)	(82,550)	(100,894)
3.8	steel strength		kN	23.0	40.5	75.	5 11	7.5	169.5	220.5	269.5
898 SS 8	steel strength steel strength Reduction for seismic shear		(lb)	(5,216)					(38,092)	(49,530)	(60,537)
SO Cla	Reduction for seismic shear	αv,seis	-			•	1.	00	•		
	Strength reduction factor for tension ²		-				0.	65			
	Strength reduction factor for shear ²	φ	-	0.60							
			kN	40.6	59.0	109.	9 17	1.5	247.1	183.1	223.8
ass 3	Nominal strength as governed by	N _{sa}	(lb)	(9,127)	(13,266	(24,70	06) (38,	555)	(55,550)	(41,172)	(50,321)
Cla	steel strength	.,	kN	20.3	35.4	65.9	9 10	2.9	148.3	109.9	134.3
)6-1 ainl		V _{sa}	(lb)	(4,564)	(7,960)	(14,82	24) (23,	133)	(33,330)	(24,703)	(30,192)
ISO 3506-1 Class A4 Stainless ³	Reduction for seismic shear	αv,seis	-		•	•	0.	80	''	•	
SO	Strength reduction factor for tension ²	φ	-				0.	65			
_	Strength reduction factor for shear ²	φ	-				0.	60			
DECK	ON INFORMATION	0	11				Reinforcii	ng bar size			
DESIG	GN INFORMATION	Symbol	Units	10	12	14	16	20	25	28	32
Nomir	nal bar diameter	d	mm	10.0	12.0	14.0	16.0	20.0	25.0	28.0	32.0
NOITIII	iai bai diametei	u	(in.)	(0.394)	(0.472)	(0.551)	(0.630)	(0.787)	(0.984)	(1.102)	(1.260)
Donat	fective cross-sectional area	4	mm ²	78.5	113.1	153.9	201.1	314.2	490.9	615.8	804.2
bai ei	rective cross-sectional area	A _{se}	(in.²)	(0.122)	(0.175)	(0.239)	(0.312)	(0.487)	(0.761)	(0.954)	(1.247)
0		Δ.	kN	43.0	62.0	84.5	110.5	173.0	270.0	338.5	442.5
550/500	Nominal strength as governed by	Nsa	(lb)	(9,711)	(13,984)	(19,034)	(24,860)	(38,844)	(60,694	(76,135)	(99,441)
550	steel strength	.,	kN	26.0	37.5	51.0	66.5	103.0	162.0	203.0	265.5
3St		V _{sa}	(lb)	(5,827)	(8,390)	(11,420)	(14,916)	(23,307)	(36,416	(45,681)	(59,665)
88	Reduction for seismic shear	αv,seis	-				0.	70			•
DIN 488 BSt	Strength reduction factor for tension ²	φ	-	- 0.65							
Δ	Strength reduction factor for shear ²	φ	-	0.60							


For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq (17.7.1.2b), ACI 318-14 Eq. (17.4.1.2) and Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers must be appropriate for the rod.

² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

³ A4-70 Stainless (M8- M24); A4-502 Stainless (M27- M30)

Metric Threaded Rod and EU Metric **Reinforcing Bars**

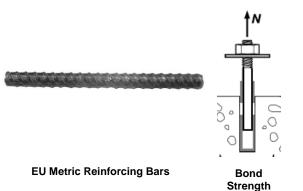
Concrete Breakout Strength

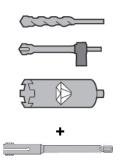
Carbide Bit or Hilti Hollow Carbide Bit or **Diamond Core Bit with Roughening Tool**

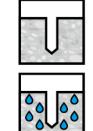
TABLE 18—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) OR CORE DRILLED WITH A

DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

	Symb					Nom	inal rod	diamet	er (m	m)		
DESIGN INFORMATION	ol	Units	10	12		16	5 2	20	24		27	30
Minimum Embodment	6	mm	60	70		80) 9	90	96		108	120
Minimum Embedment	h _{ef,min}	(in.)	(2.4)	(2.8))	(3.1	1) (3	.5)	(3.8)	(4.3)	(4.7)
Maximum Embedment	h _{ef,max}	mm	200	240		320	0 40	00	480)	540	600
Waximam Embamon	r er, max	(in.)	(7.9)	(9.4))	(12.	6) (15	5.7)	(18.9	9)	(21.3)	(23.6)
Min. anchor spacing ³	S _{min}	mm	50	60		80		00	120		135	150
1 3		(in.)	(2.0)	(2.4)		(3.2	,	.9)	(4.7		(5.3)	(5.9)
Min. edge distance ³	C _{min}	-	5d; or see Section 4.1.9.2 of this report for design with reduedge distances					reaucea n	ninimum			
Minimum and authoritists		mm	h _{ef} + 30					L . () at (4)			
Minimum concrete thickness	h _{min}	(in.)	$(h_{ef} + 1^{1}/_{4})$					$h_{ef} + 2$	2 a _o (''			
DESIGN INFORMATION	Symb	l luita		Reinforcing bar size								
DESIGN INFORMATION	ol	' linits					25	28	32			
Minimum Embedment	h	mm	60	70	7	' 5	80	90		100	112	128
Williman Embeament	h _{ef,min}	(in.)	(2.4)	(2.8)	(3	.0)	(3.1)	(3.5) ((3.9)	(4.4)	(5.0)
Maximum Embedment	h _{ef,max}	mm	200	240	28	80	320	400)	500	560	640
Maximum Embedment	l let,max	(in.)	(7.9)	(9.4)	(11	1.0)	(12.6)	(15.7	7) (19.7)	(22.0)	(25.2)
Min. anchor spacing ³	Smin	mm	50	60	8	30	100	120)	135	140	160
wiii. anonor spaoing	Omm	(in.)	(2.0)	(2.4)	,	.2)	(3.9)	(4.7	,	(5.3)	(5.5)	(6.3)
Min. edge distance ³	C _{min}	-	5d; or se	ee Secti	on 4.	.1.9 o	of this repo edge d			with r	educed m	inimum
Minimum and anota thinks are		mm	h _{ef} + 30					h _{ef} + 2	a (4)			
Minimum concrete thickness	h _{min}	(in.)	$(h_{ef} + 1^1/_4)$					Π _{ef} + Δ	2 a _o (''			
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-			Se	ee Se	ction 4.1.	10.2 of	this re	eport.		
Effectiveness factor for cracked concrete	L	SI					7	7.1				
Effectiveness factor for chacked concrete	K _{c,cr}	(in-lb)					(*	17)				
Effectiveness factor for uncracked	l _k	SI					•	10				
concrete	k _{c,uncr}	(in-lb)		(24)								
Strength reduction factor for tension, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-		0.65								
Strength reduction factor for shear, concrete failure modes, Condition B(supplemental reinforcement not present) ²	φ	-		0.70								


For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.
For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi


¹ Additional setting information is described in Figure 6, Manufacturers Printed Installation Instructions (MPII).


² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in

accordance with ACI 318-11 D.4.4. ³ For installations with 1³/₄-inch edge distance, refer to Section 4.1.9.2 for spacing and maximum torque requirements.

⁴ d_0 = hole diameter.

Carbide Bit or Hilti Hollow Carbide Bit or **Diamond Core Bit with Roughening Tool**

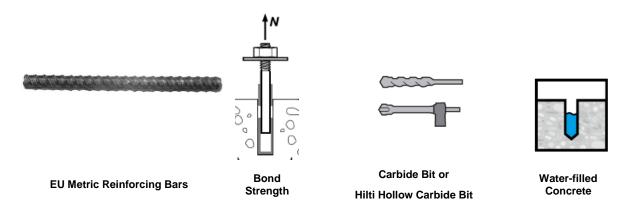
Dry and Water Saturated Concrete

TABLE 19—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) OR CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

							Reinforcir	ng bar size			
DESIG	N INFORMATION	Symbol	Units	10	12	14	16	20	25	28	32
Minimu	m Embedment	h _{ef,min}	mm (in.)	60 (2.4)	70 (2.8)	75 (3.0)	80 (3.1)	90 (3.5)	100 (3.9)	112 (4.4)	128 (5.0)
Maximu	um Embedment	h _{ef,max}	mm (in.)	200 (7.9)	240 (9.4)	280 (11.0)	320 (12.6)	400 (15.7)	500 (19.7)	560 (22.0)	640 (25.2)
ature A²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	MPa (psi)	7.4 (1,075)	7.5 (1,080)	7.5 (1,085)	7.5 (1,090)	7.5 (1,095)	5.8 (840)	5.8 (845)	5.9 (850)
Temperature range A²	Characteristic bond strength in	Tk,uncr	MPa	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8
	uncracked concrete Characteristic bond	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(psi) MPa	(1,560) 7.4	(1,560) 7.5	(1,560) 7.5	(1,560) 7.5	(1,560) 7.5	(1,560) 5.8	(1,560) 5.8	(1,560) 5.9
eratur e B²	strength in cracked concrete	$ au_{k,cr}$	(psi)	(1,075)	(1,080)	(1,085)	(1,090)	(1,095)	(840)	(845)	(850)
Temperature range B²	Characteristic bond strength in	$\tau_{k,uncr}$	MPa	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8
	uncracked concrete Characteristic bond strength in cracked		(psi) MPa	(1,560) 6.1	(1,560) 6.1	(1,560) 6.1	(1,560) 6.2	(1,560) 6.2	(1,560) 4.8	(1,560) 4.8	(1,560) 4.8
eratu ye Cî	concrete	$ au_{k,cr}$	(psi)	(885)	(885)	(890)	(895)	(900)	(690)	(695)	(700)
Temperature range C²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa (psi)	8.8 (1,280)							
Permissible Installation Conditions	Dry and water saturated concrete	Anchor Category	-					1			
Perm Insta		φ _d , φ _{ws}	-				0.	65			
or seismic ion	Hammer drilled	$lpha_{N,seis}$	-			0.80			0.85	0.90	1.00
Reduction for seismic tension	Core drilled + roughening	$lpha_{N, { m seis}}$	-		N/A		0.71	0.77	0.86	0.78	0.86

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Bond strength values correspond to concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f_c /2,500)^{0.1} [For SI: (f_c /17.2)^{0.1}]. See Section 4.1.4 of this report for bond strength determination.


of this report for bond strength determination.

Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature =110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Temperature range C: Maximum short term temperature = 248°F (120°C), Maximum long term temperature = 162°F (72°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 20—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)

DESIGN	LINEODMATION	Cumabal	11!4			Non	ninal rein	forcing b	ar size		
DESIGN	INFORMATION	Symbol	Units	10	12	14	16	20	25	28	32
Minimun	n Embedment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	4 ¹ / ₂ (114)	5 (127)
Maximur	m Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	22 ¹ / ₂ (572)	25 (635)
rature e A²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	MPa (psi)	(7.2) 1,050	(7.2) 1,050	(7.2) 1,050	(7.4) 1,070	(7.4) 1,070	(5.7) 820	(5.7) 820	(5.7) 830
Temperature range A ²	Characteristic bond strength in uncracked concrete	T _{k,uncr}	MPa (psi)	(10.5) 1,520	(10.5) 1,520	(10.5) 1,520	(10.5) 1,520	(10.5) 1,520	(10.5) 1,520	(10.5) 1,520	(10.5) 1,520
e B²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	MPa (psi)	(7.2) 1,050	(7.2) 1,050	(7.2) 1,050	(7.4) 1,070	(7.4) 1,070	(5.7) 820	(5.7) 820	(5.7) 830
Temperature range B²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa (psi)	(10.5) 1,520	(10.5) 1,520	(10.5) 1,520	(10.5) 1,520	(10.5) 1,520	(10.5) 1,520	(10.5) 1,520	(10.5) 1,520
Temperature range C ²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	MPa (psi)	(6.0) 865	(6.0) 865	(6.0) 865	(6.1) 875	(6.1) 875	(4.7) 680	(4.7) 680	(4.7) 680
Tempe	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa (psi)	(8.6) 1,250	(8.6) 1,250	(8.6) 1,250	(8.6) 1,250	(8.6) 1,250	(8.6) 1,250	(8.6) 1,250	(8.6) 1,250
Permissible installation conditions			-					3			
Pern insta con	O	ϕ_{wf}	-				().45			
Reduction for seismic	Hammer drilled	$lpha_{N,seis}$	-		0.	80		0.85	0.90	0.95	1.0

For SI: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/1,2,500)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

^{17.2)&}lt;sup>0.1</sup>). See Section 4.1.4 of this report for bond strength determination.

² Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C). Temperature range C: Maximum short term temperature = 248°F (120°C), Maximum long term temperature = 162°F (72°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

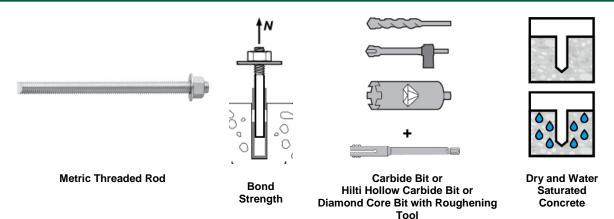


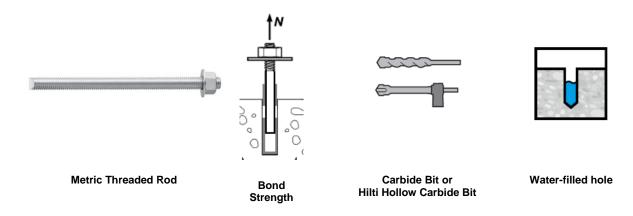
TABLE 21—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD
IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) OR CORE DRILLED WITH A
DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

							al rod diamet			
DESIGN	INFORMATION	Symbol	Units	10	12	16	20	24	27	30
Minim	a Embadmant	6	mm	60	70	80	90	96	108	120
winimum	n Embedment	h _{ef,min}	(in.)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
Massinassu	C		mm	200	240	320	400	480	540	600
Maximur	m Embedment	h _{ef,max}	(in.)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.3)	(23.6)
<u>e</u>	Characteristic bond		MPa	7.3	7.6	8.1	8.8	9.0	9.2	9.4
ratu e A²	strength in cracked concrete	$ au_{k,cr}$	(psi)	(1,055)	(1,105)	(1,170)	(1,270)	(1,305)	(1,340)	(1,365)
Temperature range A²	Characteristic bond		MPa	15.3	15.3	15.3	15.3	15.3	15.3	15.3
Te	strength in uncracked concrete	$ au_{k,uncr}$	(psi)	(2,220)	(2,220)	(2,220)	(2,220)	(2,220)	(2,220)	(2,220)
ē	Characteristic bond		MPa	7.3	7.6	8.1	8.8	9.0	9.2	9.4
ratu e B²	strength in cracked concrete	$\tau_{k,cr}$	(psi)	(1,055)	(1,105)	(1,170)	(1,270)	(1,305)	(1,340)	(1,365)
Temperature range B²	Characteristic bond		MPa	15.3	15.3	15.3	15.3	15.3	15.3	15.3
Te	strength in uncracked concrete	$ au_{k,uncr}$	(psi)	(2,220)	(2,220)	(2,220)	(2,220)	(2,220)	(2,220)	(2,220)
ē	Characteristic bond		MPa	6.0	6.3	6.6	7.2	7.4	7.6	7.7
Temperature range C ²	strength in cracked concrete	$ au_{k,cr}$	(psi)	(865)	(905)	(960)	(1,040)	(1,070)	(1,095)	(1,120)
mpe ang	Characteristic bond		MPa	12.6	12.6	12.6	12.6	12.6	12.6	12.6
T e	strength in uncracked concrete	$ au_{k,uncr}$	(psi)	(1,820)	(1,820)	(1,820)	(1,820)	(1,820)	(1,820)	(1,820)
Permissible Installation Conditions	Dry and water saturated concrete	Anchor Category	-				1			
Permi Instal Cond		φ _d , φ _{ws}	-				0.65			
or seismic on	Hammer drilled	$lpha_{ extsf{N}, ext{seis}}$	-	0.88	0.88	0.99	1.0	0.95	0.95	0.95
Reduction for seismic tension	Core drilled + roughening	$lpha_{ extsf{N}, ext{seis}}$	-	N	/A	0.88	0.96	0.96	0.82	0.82

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.


¹ Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination

this report for bond strength determination.

Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Temperature range C: Maximum short term temperature = 248°F (120°C), Maximum long term temperature = 162°F (72°C).

TABLE 22—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)

	DESIGN INFORMATION					Nominal	rod diame	ter (mm)		
DESIG	N INFORMATION	Symbol	Units	10	12	16	20	24	27	30
Minimo	F	-	mm	60	70	80	90	96	108	120
wiinimu	ım Embedment	h _{ef,min}	(in.)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
Maximu	um Embedment	6	mm	200	240	320	400	480	540	600
Waxiiii	um Embeament	h _{ef,max}	(in.)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.3)	(23.6)
ē	Characteristic		MPa	5.8	5.9	6.0	6.2	6.1	6.0	5.9
Temperature range A²	bond strength in cracked concrete	$ au_{k,cr}$	(psi)	(835)	(850)	(865)	(900)	(885)	(870)	(860)
mpe ang	Characteristic bond strength in		MPa	12.1	11.8	11.3	10.9	10.4	10.0	9.7
Te _	uncracked	Tk,uncr	(psi)	(1755)	(1710)	(1645)	(1580)	(1510)	(1445)	(1400)
<u>e</u>	Characteristic	_	MPa	5.8	5.9	6.0	6.2	6.1	6.0	5.9
Temperature range B²	bond strength in cracked concrete	$ au_{k,cr}$	(psi)	(835)	(850)	(865)	(900)	(885)	(870)	(860)
mpe ang	Characteristic	_	MPa	12.1	11.8	11.3	10.9	10.4	10.0	9.7
– Te	bond strength in uncracked	$ au_{k,uncr}$	(psi)	(1755)	(1710)	(1645)	(1580)	(1510)	(1445)	(1400)
<u> </u>	Characteristic	_	MPa	4.7	4.8	4.9	5.1	5.0	4.9	4.9
eratu e C²	bond strength in cracked concrete	$ au_{k,cr}$	(psi)	(685)	(700)	(710)	(740)	(725)	(715)	(705)
Temperature range C²	Characteristic		MPa	9.9	9.7	9.3	8.9	8.5	8.2	7.9
Te	bond strength in uncracked	T _{k,uncr}	(psi)	(1440)	(1405)	(1350)	(1295)	(1240)	(1185)	(1150)
Permissible Installation Conditions	Water-filled hole	Anchor Category	-				3			
Permissible Installation Conditions	Image: square of the square of	ϕ_{wf}	-				0.45			
Reduction for seismic tension	Hammer drilled	$lpha_{ extsf{N}, ext{seis}}$	-	0.88	0.88	0.99	1.0	0.95	0.95	0.95

For **SI**: 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

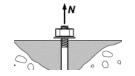
⁽f_c / 17.2)^{0.1}]. See Section 4.1.4 of this report for bond strength determination.

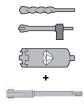
Temperature range A: Maximum short-term temperature = 130°F (55°C), Maximum long-term temperature = 110°F (43°C). Temperature range B: Maximum short-term temperature = 176°F (80°C), Maximum long-term temperature = 110°F (43°C). Temperature range C: Maximum short-term temperature = 248°F (120°C), Maximum long-term temperature = 162°F (72°C). Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. long-term concrete temperatures are roughly constant over significant periods of time.

Canadian Reinforcing Bars

Steel Strength

TABLE 23—STEEL DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS


DES	SIGN INFORMATION	Symbol	Units			Bar size		
DE	SIGN INFORMATION	Syllibol	Uiills	10 M	15 M	20 M	25 M	30 M
Non	Nominal bar diameter		mm	11.3	16.0	19.5	25.2	29.9
INOI	Homina bar diameter		(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)
Bor	Bar effective cross-sectional area		mm ²	100.3	201.1	298.6	498.8	702.2
Dai	enective cross-sectional area	A _{se}	(in.²)	(0.155)	(0.312)	(0.463)	(0.773)	(1.088)
		M	kN	54.0	108.5	161.5	270.0	380.0
	Nominal strength as governed by steel strength	N _{sa}	(lb)	(12,175)	(24,408)	(36,255)	(60,548)	(85,239)
0	Nominal strength as governed by steel strength		kN	32.5	65.0	97.0	161.5	227.5
, G30		V _{sa}	(lb)	(7,305)	(14,645)	(21,753)	(36,329)	(51,144)
CSA	Reduction for seismic shear	αv,seis	-			0.70		
	Strength reduction factor for tension ¹	φ	-		•	0.65		
	Strength reduction factor for shear ¹		-			0.60		


For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ For use with the load combinations of ACI 318-19 and ACI 318-14 5.3 or ACI 318-11 9.2, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3. Values correspond to a brittle steel element.

Canadian Reinforcing Bars

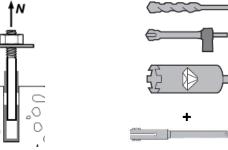
Concrete Breakout Strength

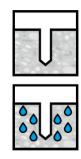
Carbide Bit or Hilti Hollow Carbide Bit or **Diamond Core Bit with Roughening Tool**

TABLE 24—CONCRETE BREAKOUT DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) OR CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DESIGN INFORMATION	Sumbal	Units			Bar size						
DESIGN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M				
Effectiveness factor for cracked concrete	k _{c.cr}	SI		•	7.1		•				
Effectiveness factor for cracked concrete	N c,cr	(in-lb)			(17)						
Effectiveness factor for uncracked concrete	k _{c,uncr}	SI	10								
2.100.1101.000 100.01 101 0.1010.000	rio,uno	(in-lb)	(24)								
Minimum Embedment	h _{ef.min}	mm	70	80	90	101	120				
William Embedment	riei,min	(in.)	(2.8)	(3.1)	(3.5)	(4.0)	(4.7)				
Maximum Embedment	h.	mm	226	320	390	504	598				
Maximum Embedment	h _{ef,max}	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)				
Min hannaning3	_	mm	57	80	98	126	150				
Min. bar spacing ³	Smin	(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)				
Min. edge distance ³		mm	5d; or see Se	5d; or see Section 4.1.9.2 of this report for design with red			minimum edge				
Will Leage distance	Cmin	(in.)			distances						
Minimum concrete thickness	h	mm	h _{ef} + 30		h	+ 2d _o ⁽⁴⁾					
Will little the concrete trickness	h _{min}	(in.)	$(h_{ef} + 1^{1}/_{4})$		Hef 4	F 2U ₀ (9					
Critical edge distance – splitting	Cac	_		See Se	ction 4.1.10.2 of	this report					
(for uncracked concrete)	Oac			000 00	011011 4.1.10.2 01	ино горога					
Strength reduction factor for tension, concrete failure											
modes, Condition B (supplemental reinforcement not present) ²	ϕ	-			0.65						
Strength reduction factor for shear, concrete failure modes,	4				0.70						
Condition B (supplemental reinforcement not present) ²	φ				0.70						

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


Additional setting information is described in Figure 6, Manufacturers Printed Installation Instructions (MPII).


The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

³ For installations with 1³/₄-inch edge distance, refer to Section 4.1.9.2 for spacing and maximum torque requirements.

⁴ d_0 = hole diameter.

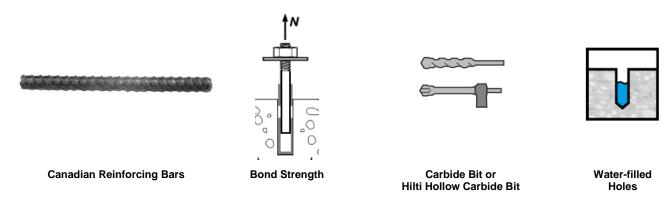
Canadian Reinforcing Bars

Carbide Bit or Hilti Hollow Carbide Bit or **Diamond Core Bit with Roughening Tool** **Dry and Water** Saturated Concrete

TABLE 25—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) OR CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

Bond Strength

						Bar size		
DESIGN	INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M
Minimum	n Embedment	h _{ef,min}	mm (in.)	70 (2.8)	80 (3.1)	90 (3.5)	101 (4.0)	120 (4.7)
Maximur	m Embedment	h _{ef,max}	mm (in.)	226 (8.9)	320 (12.6)	390 (15.4)	504 (19.8)	598 (23.5)
Temperature range A ²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	MPa (psi)	7.4 (1,075)	7.5 (1,085)	7.5 (1,095)	5.8 (840)	5.9 (850)
Tempe	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa (psi)	10.8 (1,560)	10.8 (1,560)	10.8 (1,560)	10.8 (1,560)	10.8 (1,560)
Temperature range B ²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	MPa (psi)	7.4 (1,075)	7.5 (1,085)	7.5 (1,095)	5.8 (840)	5.9 (850)
Tempe	Characteristic bond strength in uncracked concrete	T _{k,uncr}	MPa (psi)	10.8 (1,560)	10.8 (1,560)	10.8 (1,560)	10.8 (1,560)	10.8 (1,560)
Temperature range C ²	Characteristic bond strength in cracked concrete	T _{k,Cr}	MPa (psi)	6.1 (885)	6.2 (895)	6.2 (900)	4.8 (690)	4.8 (700)
Tempe rang	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa (psi)	8.8 (1,280)	8.8 (1,280)	8.8 (1,280)	8.8 (1,280)	8.8 (1,280)
Permissible installation conditions	Dry and water saturated concrete	Anchor Category	-			1		
Perm insta cond		φ _d , φ _{ws}	-			0.65		
or seismic ion	Hammer drilled	$lpha_{ extsf{N}, ext{seis}}$	-		0.80		0.85	0.97
Reduction for seismic tension	Core drilled + roughening	$lpha_{N, { m seis}}$	-	N/A	0.71	0.77	N/	A


For **SI**: 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C). Temperature range C: Maximum short term temperature = 248°F (120°C), Maximum long term temperature = 162°F (72°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 26—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)

DEGLON	LINEODMATION	0				Bar size			
DESIGN	INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M	
Minimum	Minimum Embedment		mm	70	80	90	101	120	
IVIIIIIIIIIIII	i Embeament	h _{ef,min}	(in.)	(2.8)	(3.1)	(3.5)	(4.0)	(4.7)	
Movimur	m Embedment	h	mm	226	320	390	504	598	
IVIAXIIIIUI	II LIIIbeament	h _{ef,max}	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)	
<u>e</u>	Characteristic bond strength in cracked	_	MPa	7.3	7.4	7.4	5.7	5.8	
Temperature range A²	concrete	$ au_{k,cr}$	(psi)	(1,050)	(1,070)	(1,070)	(820)	(830)	
empe rang	Characteristic bond	_	MPa	10.5	10.5	10.5	10.5	10.5	
Ξ	strength in uncracked concrete	$ au_{k,uncr}$	(psi)	(1,520)	(1,520)	(1,520)	(1,520)	(1,520)	
	Characteristic bond strength in cracked		MPa	7.3	7.4	7.4	5.7	5.8	
eratu le B²	concrete	$ au_{k,cr}$	(psi)	(1,050)	(1,070)	(1,070)	(820)	(830)	
Temperature range B²	Characteristic bond strength in		MPa	10.5	10.5	10.5	10.5	10.5	
	uncracked concrete	$ au_{k,uncr}$	(psi)	(1,520)	(1,520)	(1,520)	(1,520)	(1,520)	
ī.	Characteristic bond strength in cracked	_	MPa	6.0	6.1	6.1	4.7	6.0	
eratu e C	concrete	$ au_{k,cr}$	(psi)	(865)	(875)	(875)	(680)	(865)	
Temperature range C ²	Characteristic bond strength in	_	MPa	8.6	8.6	8.6	8.6	8.6	
	uncracked concrete	$ au_{k,uncr}$	(psi)	(1,250)	(1,250)	(1,250)	(1,250)	(1,250)	
Permissible installation conditions	Water-filled Holes	Anchor Category	-			3			
Permi instal condi	Permissible installation conditions water-filled Holes		-			0.45			
Reductio n for seismic	Hammer drilled	$lpha_{ extsf{N}, ext{seis}}$	-	0.80 0.85 0.9					

For SI: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi ($\tilde{5}5.2$ MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.1}$ [For SI: $(f'_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

³Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Temperature range C: Maximum short term temperature = 248°F (120°C), Maximum long term temperature = 162°F (72°C).

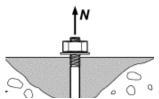
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

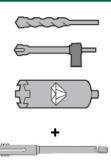
Fractional and Metric HIS-N and HIS-RN Internal Threaded Insert

Steel Strength

TABLE 27—STEEL DESIGN INFORMATION FOR FRACTIONAL AND METRIC HIS-N AND HIS-RN THREADED INSERTS1

DESIG		Symbol	Units	Nomina		o Screw D actional	iameter	Units	No	ominal Bo	lt/Cap Scr mm) Metri		ter
INFO	RMATION	Cy20.		³ / ₈	1/2	⁵ / ₈	3/4	00	8	10	12	16	20
			in.	0.65	0.81	1.00	1.09	mm	12.5	16.5	20.5	25.4	27.6
HIS In	sert O.D.	D	(mm)	(16.5)	(20.5)	(25.4)	(27.6)	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
HIS in	sert length	L	in.	4.33	4.92	6.69	8.07	mm	90	110	125	170	205
1110 111	sert length		(mm)	(110)	(125)	(170)	(205)	(in.)	(3.54)	(4.33)	(4.92)	(6.69)	(8.07)
	ffective cross-	A _{se}	in. ²	0.0775	0.1419	0.2260	0.3345	mm ²	36.6	58	84.3	157	245
	nal area		(mm²) in.²	(50) 0.178	(92) 0.243	(146) 0.404	(216) 0.410	(in.²) mm²	(0.057) 51.5	(0.090) 108	(0.131) 169.1	(0.243) 256.1	(0.380)
	sert effective sectional area	A _{insert}	(mm²)	(115)	(157)	(260)	(265)	(in. ²)	(0.080)	(0.167)	(0.262)	(0.397)	(0.368)
			lb	9,690	17,740	28,250	41,815	kN	-	-	-	-	-
B7	Nominal steel strength – ASTM	N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(lb)	_	_	_	_	_
93	A193 B7 ³		lb	5,815	10,645	16,950	25,090	kN	_	_	_	_	_
1 A1	bolt/cap screw	V _{sa}	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(lb)	_	_	_	_	_
ASTM A193	Nominal steel		lb	12,650	16,195	26,925	27,360	kN	_	_	_	_	_
Ä	strength –	N _{sa}	(kN)	-	(72.0)	(119.8)	(121.7)	(lb)	_	_	_	_	
	HIS-N insert		, ,	(56.3)		, ,	, ,	` '					-
m	Nominal steel strength – ASTM	N _{sa}	lb	8,525	15,610	24,860	36,795	kN	-	-	-	-	-
193 7 St	A193 Grade		(kN)	(37.9)	(69.4)	(110.6)	(163.7)	(lb)	-	-	-	-	-
1 A 1 B8N	B8M SS bolt/cap	V _{sa}	lb	5,115	9,365	14,915	22,075	kN	-	-	-	-	-
STN ide	screw	- 34	(kN)	(22.8)	(41.7)	(66.3)	(98.2)	(lb)	-	-	-	-	-
ASTM A193 Grade B8M SS	Nominal steel strength –	۸,	lb	17,165	23,430	38,955	39,535	kN	-	-	-	-	-
	HIS-RN insert	N _{sa}	(kN)	(76.3)	(104.2)	(173.3)	(175.9)	(lb)	-	-	-	-	-
		۸,	lb	-	-	-	-	kN	29.5	46.5	67.5	125.5	196.0
	Nominal steel strength – ISO	N _{sa}	(kN)	-	-	-	-	(lb)	(6,582)	(10,431)	(15,161)	(28,236)	(44,063)
98-1 8.8	898-1 Class 8.8		lb	-	-	-	-	kN	17.5	28.0	40.5	75.5	117.5
ISO 898-1 Class 8.8	bolt/cap screw	V _{sa}	(kN)	-	-	-	-	(lb)	(3,949)	(6,259)	(9,097)	(16,942)	(26,438)
<u>S</u> D	Nominal steel		lb	-	-	-	-	kN	25.0	53.0	78.0	118.0	110.0
	strength – HIS-N insert	N _{sa}	(kN)	_	_	_	_	(lb)	(5,669)	(11,894)	(17,488)	(26,483)	(24,573)
			lb	-	_	_	_	kN	25.5	40.5	59.0	110.0	171.5
ass	Nominal steel strength – ISO	N _{sa}	(kN)	-	_	_	_	(lb)	(5,760)	(9,127)	(13,266)	(24,706)	(38,555)
Cl	3506-1 Class		lb		_	_	_	kN	15.5	24.5	35.5	66.0	103.0
36-1 Sta	A4-70 Stainless bolt/cap screw	V_{sa}		- -	_	_	_						
. 35(-70	Nominal steel		(kN)				-	(lb)	(3,456)	(5,476)	(7,960)	(14,824)	(23,133)
ISO 3506-1 Class A4-70 Stainless	strength –	N _{sa}	lb (1.1)	-	-	-	-	kN	36.0	75.5	118.5	179.5	166.5
	HIS-RN insert		(kN)	-	-	-	-	(lb)	(8,099)	(16,991)	(26,612)	(40,300)	(37,394)
Reduc shear	ction for seismic	αv,seis	-		0.	94		-	0.94				
Streng for ten	gth reduction factor asion ²	φ	ı		0.	65		-	0.65				
Strength reduction factor for shear ²		φ	-		0.	60		-			0.60		


For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.


¹ Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2), ACI 318-14 Eq. (17.4.1.2), ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers must be appropriate for the rod.

²The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

³ For the calculation of the design steel strength in tension and shear for the bolt or screw, the *ϕ* factor for ductile steel failure according to ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3 can be used.

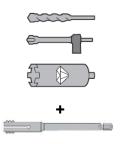
Fractional and Metric HIS-N and HIS-RN Internal Threaded Insert **Concrete Breakout Strength**

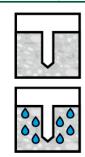
Carbide Bit or Hilti Hollow Carbide Bit or Diamond Core Bit with Roughening Tool

TABLE 28—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) OR CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DESIGN INFORMATION Syr		Units	Nomina	l Bolt/Cap (in.) Fra	o Screw Dactional	Diameter	Units	Nominal Bolt/Cap Screw Diame (mm) Metric				eter
	ol		3/8	1/2	5/8	3/4		8	10	12	16	20
Effectiveness factor for		in-lb		1	7		SI	7.1				
cracked concrete	k _{c,cr}	(SI)	(7.1)				(in-lb)	(17)				
Effectiveness factor for	1,	in-lb		24						10		
uncracked concrete	K _{c,uncr}	(SI)		(1	0)		(in-lb)			(24)		
Effective embedment	b	in.	4 ³ / ₈	5	63/4	8 ¹ / ₈	mm	90	110	125	170	205
depth	h _{ef}	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
Min analysis as		in.	31/4	4	5	5 ¹ / ₂	mm	63	83	102	127	140
Min. anchor spacing ³	S _{min}	(mm)	(83)	(102)	(127)	(140)	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)
Mary advantages 3	_	in.	31/4	4	5	5 ¹ / ₂	mm	63	83	102	127	140
Min. edge distance ³	C _{min}	(mm)	(83)	(102)	(127)	(140)	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)
Minimum concrete		in.	5.9	6.7	9.1	10.6	mm	120	150	170	230	270
thickness	h _{min}	(mm)	(150)	(170)	(230)	(270)	(in.)	(4.7)	(5.9)	(6.7)	(9.1)	(10.6)
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-	See Se	ection 4.1.	10.2 of thi	s report	-	See Section 4.1.10.2 of this report				ort
Strength reduction factor for tension, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-	0.65				-	0.65				
Strength reduction factor for shear, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-		0.	70		-	0.70				

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.


¹ Additional setting information is described in Figure 6, Manufacturers Printed Installation Instructions (MPII).


² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

³ For installations with 1³/₄-inch edge distance, refer to Section 4.1.9.2 for spacing and maximum torque requirements.

Fractional and Metric HIS-N and HIS-RN **Internal Threaded Insert**

Bond Strength

Carbide Bit or Hilti Hollow Carbide Bit or **Diamond Core Bit with Roughening Tool**

Dry and Water Saturated Concrete

TABLE 29—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

		1		DE BIT (C	1				-	,			
DESIG		Symbol	Units	Nomina	l Bolt/Cap (in.) Fra	o Screw L actional	Jiameter	Units	Nominal Bolt/Cap Screw Diameter (mm) Metric				
INFORI	MATION	- Cyllibor	Omis	³ / ₈	1/2	⁵ / ₈	3/4	Omico	8	10	12	16	20
Effective embedment			in.	43/8	5	63/4	81/8	mm	90	110	125	170	205
depth		h _{ef}	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
LIC Inc	ert O.D.	D	in.	0.65	0.81	1.00	1.09	mm	12.5	16.5	20.5	25.4	27.6
	en O.D.	D	(mm)	(16.5)	(20.5)	(25.4)	(27.6)	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
σ)	Characteristic bond strength		psi	870	890	910	920	MPa	5.9	6.0	6.1	6.3	6.3
Temperature range A²	in cracked concrete	$\tau_{k,cr}$	(MPa)	(6.0)	(6.1)	(6.3)	(6.3)	(psi)	(850)	(870)	(890)	(910)	(920)
empe rang	Characteristic bond strength	_	psi	1,950	1,950	1,950	1,950	MPa	13.5	13.5	13.5	13.5	13.5
<u> </u>	in uncracked concrete	$ au_{k,uncr}$	(MPa)	(13.5)	(13.5)	(13.5)	(13.5)	(psi)	(1,950)	(1,950)	(1,950)	(1,950)	(1,950)
Φ	Characteristic bond strength	_	psi	870	890	910	920	MPa	5.9	6.0	6.1	6.3	6.3
eratur e B²	in cracked concrete	$\tau_{k,cr}$	(MPa)	(6.0)	(6.1)	(6.3)	(6.3)	(psi)	(850)	(870)	(890)	(910)	(920)
Temperature range B²	Characteristic bond strength		psi	1,950	1,950	1,950	1,950	MPa	13.5	13.5	13.5	13.5	13.5
-	in uncracked concrete	$ au_{k,uncr}$	(MPa)	(13.5)	(13.5)	(13.5)	(13.5)	(psi)	(1,950)	(1,950)	(1,950)	(1,950)	(1,950)
Φ	Characteristic bond strength	_	psi	715	730	750	755	MPa	4.8	4.9	5.0	5.2	5.2
Temperature range C²	in cracked concrete	T _{k,cr}	(MPa)	(4.9)	(5.0)	(5.2)	(5.2)	(psi)	(695)	(715)	(730)	(750)	(755)
empe rang	Characteristic bond strength	_	psi	1,600	1,600	1,600	1,600	MPa	11.0	11.0	11.0	11.0	11.0
	in uncracked concrete	$ au_{k,uncr}$	(MPa)	(11.0)	(11.0)	(11.0)	(11.0)	(psi)	(1,600)	(1,600)	(1,600)	(1,600)	(1,600)
sible ation ions	Dry and water saturated conc.	Anchor Category	-			1		-			1		
Permissible installation conditions		φ _{d,} φ _{ws}	-		0.	65		-			0.65		
	Hammer drilled												
or seism ion	$\alpha_{N, seis}$		-	0.92				-	0.92				
Reduction for seismic tension	Core drilled + roughening	$lpha_{ extsf{N}, ext{seis}}$	-	0.81	0.88	0.92	0.76	-	N/A	0.81	0.88	0.92	0.76

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Bond strength values correspond to concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ($f_c/2$,500)^{0.1} for uncracked concrete, [For SI: ($f_c/2$)

^{17.2)&}lt;sup>0.1</sup>] and (f_c / 2,500)^{0.3} for cracked concrete, [For SI: (f_c / 17.2)^{0.3}]. See Section 4.1.4 of this report for bond strength determination.

Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature =110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Temperature range C: Maximum short term temperature = 248°F (120°C), Maximum long term temperature = 162°F (72°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

FIGURE 5—HILTI HIT-HY 200 V3 ANCHORING SYSTEM

TABLE 30—DEVELOPMENT LENGTH FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT^{1, 2, 4}

BIT ON HILLI HOLLOW CANBIDE BIT												
	_			Bar size								
DESIGN INFORMATION	Symbol	Criteria Section of Reference Standard	Units	#3	#4	#5	#6	#7	#8	#9	#10	
Nominal reinforcing	d _b	ASTM A615/A706	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.125	1.250	
bar diameter	U _D		(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)	
Nominal bar area	A_b	ASTM A615/A706	in² (mm²)	0.11 (71.3)	0.20 (126.7)	0.31 (197.9)	0.44 (285.0)	0.60 (387.9)	0.79 (506.7)	1.00 (644.7)	1.27 (817.3)	
Development length for $f_y = 60$ ksi and f'_c = 2,500 psi (normal	I _d	ACI 318-19 25.4.2.4 ACI 318-14 25.4.2.3	in.	12.0	14.4	18.0	21.6	31.5	36.0	40.5	45.0	
weight concrete)3		ACI 318-11 12.2.3	(mm)	(304.8)	(365.8)	(457.2)	(548.6)	(800.1)	(914.4)	(1028.7)	(1143)	
Development length for $f_y = 60$ ksi and f'_c	I _d	ACI 318-19 25.4.2.4 ACI 318-14 25.4.2.3	in.	12.0	12.0	14.2	17.1	24.9	28.5	32.0	35.6	
= 4,000 psi (normal weight concrete) ³	'd	ACI 318-11 12.2.3	(mm)	(304.8)	(304.8)	(361.4)	(433.7)	(632.5)	(722.9)	(812.8)	(904.2)	

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

$${}^{4}\left(\frac{c_{b}+K_{tr}}{d_{b}}\right)=2.5$$
, $\psi_{t}=1.0$, $\psi_{e}=1.0$, $\psi_{s}=0.8$ for $d_{b}\leq \#6$, 1.0 for $d_{b}>\#6$.

¹ Development lengths valid for static, wind, and earthquake loads (SDC A and B).

² Development lengths in SDC C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21 and section 4.2.4 of this report.

³ For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-19 25.4.2.5, ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d) are met to permit *λ* > 0.75.

TABLE 31—DEVELOPMENT LENGTH FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1, 2, 4

	_	Criteria Section of	Units	Bar size							
DESIGN INFORMATION	Symbol	Reference Standard		8	10	12	16	20	25	32	
Nominal reinforcing bar diameter	d _b	BS 4449: 2005	mm (in.)	8 (0.315)	10 (0.394)	12 (0.472)	16 (0.630)	20 (0.787)	25 (0.984)	32 (1.260)	
Nominal bar area	A_b	BS 4449: 2005	mm ² (in ²)	50.3 (0.08)	78.5 (0.12)	113.1 (0.18)	201.1 (0.31)	314.2 (0.49)	490.9 (0.76)	804.2 (1.25)	
Development length for $f_y = 72.5$ ksi and $f'_c = 2,500$ psi (normal	I _d	ACI 318-19 25.4.2.4 ⁵ ACI 318-14 25.4.2.3	mm	305	348	417	556	871	1087	1392	
weight concrete) ³		ACI 318-11 12.2.3	(in.)	(12.0)	(13.7)	(16.4)	(21.9)	(34.3)	(42.8)	(54.8)	
Development length for $f_y = 72.5$ ksi and f'_c	;	ACI 318-19 25.4.2.4 ⁵ ACI 318-14 25.4.2.3	mm	305	305	330	439	688	859	1100	
= 4,000 psi (normal weight concrete) ³	'a	ACI 318-11 12.2.3	(in.)	(12.0)	(12.0)	(13.0)	(17.3)	(27.1)	(33.8)	(43.3)	

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

$${}^{4}\left(\frac{C_{b}+K_{tr}}{d_{b}}\right)=2.5, \ \psi_{t}=1.0, \ \psi_{e}=1.0, \ \psi_{s}=0.8 \text{ for } d_{b}<20 \text{mm}, \ 1.0 \text{ for } d_{b}\geq20 \text{mm}.$$

TABLE 32—DEVELOPMENT LENGTH FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1, 2, 4

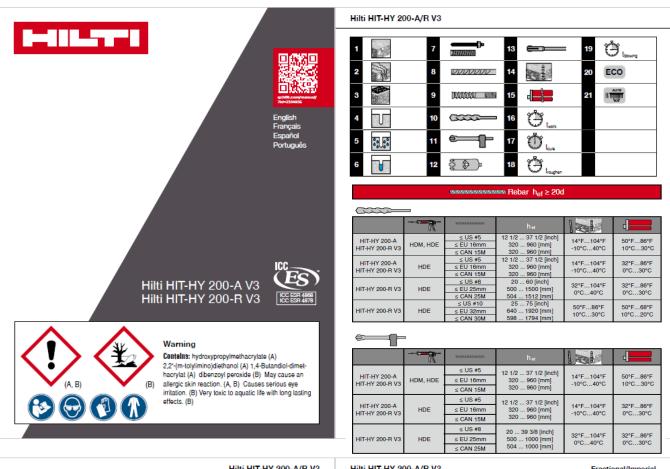
	-		4.5			Bar size		
DESIGN INFORMATION	Symbol	Criteria Section of Reference Standard	Units	10M	15M	20M	25M	30M
Nominal reinforcing bar diameter	d_b	CAN/CSA-G30.18 Gr. 400	mm (in.)	11.3 (0.445)	16.0 (0.630)	19.5 (0.768)	25.2 (0.992)	29.9 (1.177)
Nominal bar area	A_b	CAN/CSA-G30.18 Gr. 400	mm² (in²)	100.3 (0.16)	201.1 (0.31)	298.6 (0.46)	498.8 (0.77)	702.2 (1.09)
Development length for $f_y = 58$ ksi and $f_c = 2,500$ psi (normal weight concrete) ³	l _d	ACI 318-19 25.4.2.4 ACI 318-14 25.4.2.3 ACI 318-11 12.2.3	mm (in.)	315 (12.4)	445 (17.5)	678 (26.7)	876 (34.5)	1041 (41.0)
Development length for $f_y = 58$ ksi and $f'_c =$ 4,000 psi (normal weight concrete) ³	I _d	ACI 318-19 25.4.2.4 ACI 318-14 25.4.2.3 ACI 318-11 12.2.3	mm (in.)	305 (12.0)	353 (13.9)	536 (21.1)	693 (27.3)	823 (32.4)

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

⁴
$$\left(\frac{c_b + K_{tr}}{d_b}\right)$$
 = 2.5, ψ_t = 1.0, ψ_e = 1.0, ψ_s = 0.8 for d_b < 20M, 1.0 for d_b ≥20M.

 $^{^{1}\}mbox{Development}$ lengths valid for static, wind, and earthquake loads (SDC A and B).

² Development lengths in SDC C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21 and section 4.2.4 of this report.


³ For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-19 25.4.2.5, ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d) are met to permit \(\lambda > 0.75\).

⁵ I_d must be increased by 9.5% to account for ψg in ACI 318-19 25.4.2.4. ψg has been interpolated from Table 25.4.2.5 of ACI 318-10 for fy = 72.5 ksi.

¹ Development lengths valid for static, wind, and earthquake loads (SDC A and B).

² Development lengths in SDC C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21 and Section 4.2.4 of this report.

 $^{^3}$ For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-19 25.4.2.5, ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d) are met to permit λ > 0.75.

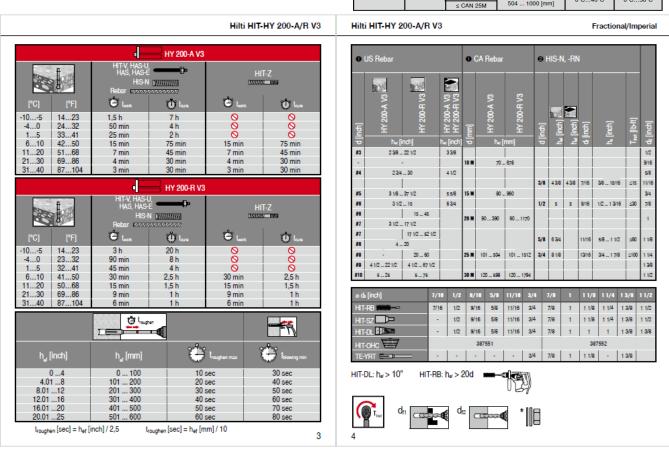


FIGURE 6-MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII)

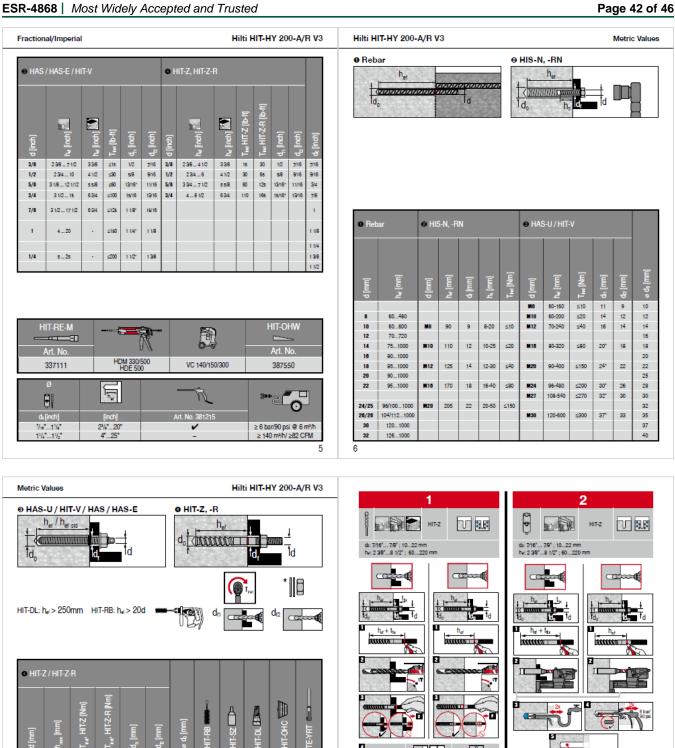
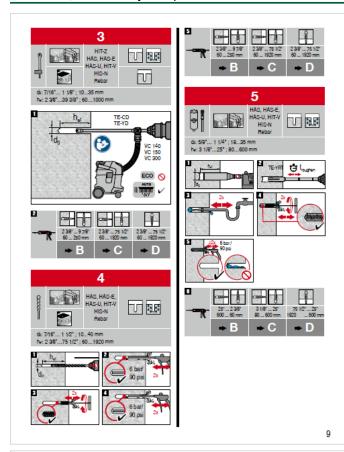


FIGURE 6—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

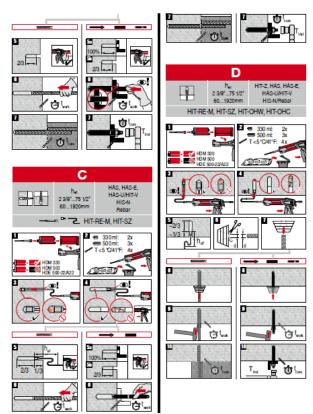
#387552

→ D

60-96


60-120


60-144


100-220 24"

 M10

M12

Hilti HIT-HY 200-A/R V3

Adhesive anchoring system for rebar and anchor fastenings in co

Hilti HIT-HY 200-A/-R V3

hacrylat (A), Dibenzoylperoxid (B) 2,2'-(m-tolylimino)diethanol (A)

Warning May cause an allergic skin reaction. (A, B) [Causes serious per inflation. (B) | Yery toxic to aquatic file with long lasting effects. (B) | Do not get in eyes, on skin or on clothing. | Wear eye protection, protective clothing, protective gloves. | If PO SKINE Wash with placety of water. | If IF METER Since castingway with water for exceral minutes. Enonese contact leaves, if present and easy to do. Continue rinsing. | If skin irritation or rach occurs: Bet medical advice/attention. | If eye irritation persists feel medical advice/attention. sists: Get medical advice/attention.

Disposal considerations: Empty packs: Leave the mixer attached and dispose of via the local Green Dot recovery system or EAK waste material code: 150102 plastic packaging Full or partially emptied packs: Must be disposed of as special waste in accordance with official regulations. EAK waste material code: 08 04 09° waste adherives and sealants containing organic solvents or other dangerous substances. or EAK waste material code: 20 01 27° paint, inks, adherives and resins containing dangerous substances.

dangerous substances.

Product Information: Always keep these instructions together with the product even when given to other persons. Material Safety Data Sheet: Review the MSDS before use. Check expiration date: See imprint on foil pack manifold (month)year). Do not use expired product. Fail pack temperature during usage: 0 °C to 40 °C / 32 °F to 104 °F. Base material temperature at time of installations MSD4, HTF4, HS, Rebare between 10° C and 40° C/ 14 °F and 104 °F. HTF2 between -50° C and 40° C/ 14 °F and 104 °F. Brot 2 between -50° C and 40° C/ 14 °F and 104 °F. Conditions for transport and storage: Keep in a cool, dry and dark place between 5 °C and 25 °C / 41 °F and 77 °F. For any application not covered by this document / beyond values specified, please contact Hilli. Partly used foil packs must remain in the cascette and has to be used within 4 weeks. Leave the mixer attanched on the foil pack manifold and store within the cascette under the recommended storage conditions. If reused, attach a new mixer and discard the initial quantity of anchor enthericus.

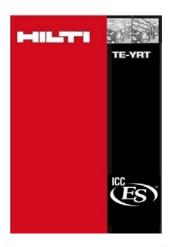
Failure to observe these installation instructions, use of non-Hilti anchors, poor or questionable concrete conditions, or unique applications may affect the reliability or performance of the fasterings.

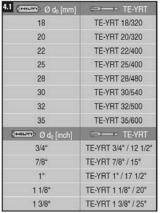
▲ NOTICE

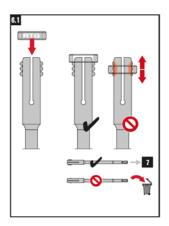
A The surface of the HIT-Z anchor rod must not be aftered in any way.

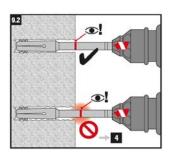
- As the surface of the HT-Z must stay free from dirt and dust during the installation procedure and its cones must be fully embedde into mortar (especially at minimum embedment). Torque moment must always be applied on HT-Z nut and washer installed above a solid baseplate laying on concrete.
- above a solid baseplate laying on concrete.

 A Improper handling may cause mortar splackes. Always wear safely glasses, gloves and protective clothes during installation.

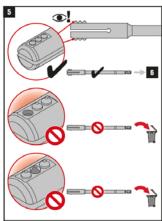

 I Never start dispensing without a mixer properly sciewed on. I Allach a new mixer prior to dispensing a new foil pack (ensure srug fit). I Use only the type of mixer [HIT-RE-M] supplied with the adhesive. Do not modify the mixer in any way. I Never use damaged foil packs and/or damaged or unclean foil pack holders (cassettes).

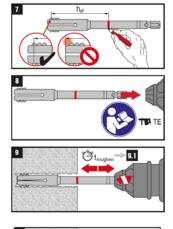

 A Poer load values: / potential failure of fastening points due to inadequate borehole cleaning. Hith hollow drill bits TE-CD, TE-YD must be used in conjunction with a property maintained Hith vacuum cleaner with model and suction capacity (volumetric flow rate) as specified in the accessory table. I The boreholes must be free of debris, dust, water, ice, oil, grease and other contaminants prior to adhestive injection. I For blowing out the borehole—blow out with oil free air until return air stream is free of noticeable dust. I For fluxing the borehole—flux with valuer fine pressure until water runs clear. I For brushing the borehole—flux with valuer fine pressure until water runs clear. I For brushing the borehole—flux with valuer fine pressure until water runs clear. I For brushing the borehole—flux with valuer fine pressure until water runs clear. I For brushing the prompted and trush the redeaded. Immortality Benome all water from the borehole and blow out with oil fire compressed air too small and must be replaced. I Important! Remove all water from the borehole and blow out with oil free compressed air until borehole is completely dried before mortar injection (not applicable to hammer drilled hole in underwater application). I Do not exceed the roughening time when roughening the drilled hole!

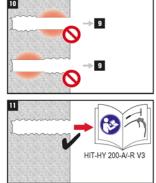

12

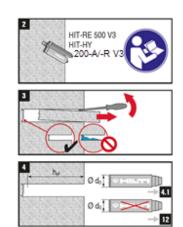

- ♠ Ensure that boreholes are filled from the back of the borehole without forming air volds. If necessary use the accessories / extensions to reach the back of the borehole. I For overhead applications use the overhead accessories HIT-SZ and take special care when inserting the fastening element. Excess adhesive may be forced out of the borehole. Make sure that no mortar drips onto the installer. I in water saturated concrete it is required to set the anchor immediately after cleaning the borehole.
- A Not adhering to these setting instructions can result in failure of fastening points!

11









⇒ TE-YRT	() RTG
TE-YRT 18/320	RTG 18
TE-YRT 20/320	RTG 20
TE-YRT 22/400	RTG 22
TE-YRT 25/400	RTG 25
TE-YRT 28/480	RTG 28
TE-YRT 30/540	RTG 30
TE-YRT 32/500	RTG 32
TE-YRT 35/600	RTG 35
= TE-YRT	() RTG
E-YRT 3/4" / 12 1/2"	RTG 3/4*
E-YRT 7/8" / 15"	RTG 7/8*
E-YRT 1" / 17 1/2"	RTG 1"
E-YRT 1 1/8" / 20"	RTG 1 1/8"
E-YRT 1 3/8" / 25"	RTG 1 3/8"

9.1 h _{et} [mm]	t _{roughen} (= h _{et} /10)
0 100	10 sec
101 200	20 sec
201 300	30 sec
301 400	40 sec
401 500	50 sec
501 600	60 sec
h _{et} [inch]	t _{roughen} (= h _{et} - 2.5)
0 4	10 sec
4.01 8	20 sec
8.01 12	30 sec
12.01 16	40 sec
16.01 20	50 sec
20.01 25	60 sec

12 @ Ø do [mm]	=> TE-YRT
17,9 18,2	TE-YRT 18/320
19,9 20,2	TE-YRT 20/320
21,922,2	TE-YRT 22/400
24,9 25,2	TE-YRT 25/400
27,9 28,2	TE-YRT 28/480
29,9 30,2	TE-YRT 30/540
31,9 32,2	TE-YRT 32/500
34,9 35,2	TE-YRT 35/600
Ø do [inch]	= TE-YRT
0.764 0.776	TE-YRT 3/4" / 12 1/2"
0.862 0.874	TE-YRT 7/8" / 15"
1.0081.020	TE-YRT 1" / 17 1/2"
1.146 1.157	TE-YRT 1 1/8" / 20"
1.3741.386	TE-YRT 1 3/8" / 25"

ICC-ES Evaluation Report

ESR-4868 LABC and LARC Supplement

Reissued November 2022

This report is subject to renewal November 2024.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-HY 200 V3 ADHESIVE ANCHORS AND POST INSTALLED REINFORCING BAR CONNECTIONS IN CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT HY 200 Adhesive Anchoring System and Post-Installed Reinforcing Bar System for cracked and uncracked concrete, described in ICC-ES evaluation report ESR-4868, has also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:

- 2020 City of Los Angeles Building Code (LABC)
- 2020 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The Hilti HIT-HY 200 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System for cracked and uncracked concrete, described in Sections 2.0 through 7.0 of the evaluation report ESR-4868, complies with LABC Chapter 19, and LARC, and is subjected to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The Hilti HIT HY 200 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report <u>ESR-4868</u>.
- The design, installation, conditions of use and labeling of the Hilti HIT-HY 200 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are in accordance with the 2018 International Building Code® (2018 IBC) provisions noted in the evaluation report <u>ESR-4868</u>.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.
- The allowable and strength design values listed in the evaluation report and tables are for the connection of the adhesive
 anchors and post-installed reinforcing bars to the concrete. The connection between the adhesive anchors or post-installed
 reinforcing bars and the connected members shall be checked for capacity (which may govern).
- For use in wall anchorage assemblies to flexible diaphragm, anchors shall be designed per the requirements of City of Los Angeles Information Bulletin P/BC 2020-071.

This supplement expires concurrently with the evaluation report, reissued November 2022.

ICC-ES Evaluation Report

ESR-4868 FBC Supplement

Reissued November 2022

This report is subject to renewal November 2024.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-HY 200 V3 ADHESIVE ANCHORS AND POST INSTALLED REINFORCING BAR CONNECTIONS IN CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT-HY 200 V3 Adhesive Anchors and Post-Installed Reinforcing Bar System in Concrete, described in ICC-ES evaluation report ESR-4868, has also been evaluated for compliance with the codes noted below.

Applicable code editions:

- 2020 Florida Building Code—Building
- 2020 Florida Building Code—Residential

2.0 CONCLUSIONS

The Hilti HIT-HY 200 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System, described in Sections 2.0 through 7.0 of the ICC-ES evaluation report ESR-4868, comply with the *Florida Building Code—Building* and the *Florida Building Code—Residential*, provided the design requirements are in accordance with the *Florida Building Code—Building* or the *Florida Building Code—Residential*, as applicable. The installation requirements noted in ICC-ES evaluation report ESR-4868 for the 2018 *International Building Code*® meet the requirements of the *Florida Building Code—Building* or the *Florida Building Code—Residential*.

Use of the Hilti HIT-HY 200 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System have also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the *Florida Building Code—Building* and the *Florida Building Code—Residential*, with the following condition:

a) For anchorage to wood members, the connection subject to uplift must be designed for no less than 700 pounds (3114 N).

For products falling under Florida Rule 61G20-3, verification that the report holder's quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report, reissued November 2022.

