

www.icc-es.org | (800) 423-6587 | (562) 699-0543

ICC-ES Evaluation Report ESR-3814

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-RE 500 V3 ADHESIVE ANCHORS AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2021, 2018, 2015, and 2012 International Building Code[®] (IBC)
- 2021, 2018, 2015, and 2012 *International Residential Code*[®] (IRC)

For evaluation for compliance with the *National Building Code of Canada*[®] (NBCC), see listing report <u>ELC-3814</u>.

For evaluation for compliance with codes adopted by Los Angeles Department of Building and Safety (LADBS), see ESR-3814 LABC and LARC Supplement.

Property evaluated:

Structural

2.0 USES

The Hilti HIT-RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are used to resist static, wind and earthquake (Seismic Design Categories A through F) tension and shear loads in cracked and uncracked normal-weight and lightweight concrete having a specified compressive strength, f'_c , of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

The anchor system complies with anchors as described in Section 1901.3 of the 2021, 2018 and 2015 IBC, and Section 1909 of the 2012 IBC and is an alternative to cast-in-place anchors described in Section 1908 of the 2012 IBC.

A Subsidiary of the International Code Council®

Reissued January 2023

This report is subject to renewal January 2025.

The anchor systems may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

The post-installed reinforcing bar system is an alternative to cast-in-place reinforcing bars governed by ACI 318 and IBC Chapter 19.

3.0 DESCRIPTION

3.1 General:

The Hilti HIT-RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are comprised of the following components:

- Hilti HIT-RE 500 V3 adhesive packaged in foil packs
- · Adhesive mixing and dispensing equipment
- · Equipment for hole cleaning and adhesive injection

The Hilti HIT-RE 500 V3 Adhesive Anchoring System may be used with continuously threaded rod, Hilti HIS-(R)N internally threaded inserts or deformed steel reinforcing bars as depicted in Figure 4. The Hilti HIT-RE 500 V3 Post-Installed Reinforcing Bar System may only be used with deformed steel reinforcing bars as depicted in Figures 2 and 3. The primary components of the Hilti Adhesive Anchoring and Post-Installed Reinforcing Bar Systems, including the Hilti HIT-RE 500 V3 Adhesive, HIT-RE-M static mixing nozzle and steel anchoring elements, are shown in Figure 7 of this report.

The manufacturer's printed Installation instructions (MPII), as included with each adhesive unit package, are consolidated as Figure 8A and 8B.

3.2 Materials:

3.2.1 Hilti HIT-RE 500 V3 Adhesive: Hilti HIT-RE 500 V3 Adhesive is an injectable, two-component epoxy adhesive. The two components are separated by means of a dual-cylinder foil pack attached to a manifold. The two components combine and react when dispensed through a static mixing nozzle attached to the manifold. Hilti HIT-RE 500 V3 is available in 11.1-ounce (330 ml), 16.9-ounce (500 ml), and 47.3-ounce (1400 ml) foil packs. The manifold attached to each foil pack is stamped with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened foil pack stored in a dry, dark environment and in accordance with Figure 8A.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

3.2.2 Hole Cleaning Equipment:

3.2.2.1 Standard Equipment: Standard hole cleaning equipment, comprised of steel wire brushes and air nozzles, is described in Figure 8A of this report.

3.2.2.2 Hilti Safe-SetTM System: For the elements described in Sections 3.2.5.1 through 3.2.5.3 and Section 3.2.6, the Hilti TE-CD or TE-YD hollow carbide drill bit with a carbide drilling head conforming to ANSI B212.15 must be used. When used in conjunction with a Hilti vacuum with a minimum value for the maximum volumetric flow rate of 129 CFM (61 ℓ /s), the Hilti TE-CD or TE-YD drill bit will remove the drilling dust, automatically cleaning the hole. Available sizes for Hilti TE-CD or TE-YD drill bit are shown in Figure 8A.

3.2.3 Hole Preparation Equipment:

3.2.3.1 Hilti Safe-Set™ System: TE-YRT Roughening Tool: For the elements described in Sections 3.2.5.1 through 3.2.5.3 and Tables 9, 12, 17, 20, and 29, the Hilti TE-YRT roughening tool with a carbide roughening head is used for hole preparation in conjunction with holes core drilled with a diamond core bit as illustrated in Figure 5.

3.2.4 Dispensers: Hilti HIT-RE 500 V3 must be dispensed with manual, electric, or pneumatic dispensers provided by Hilti.

3.2.5 Anchor Elements:

3.2.5.1 Threaded Steel Rods: Threaded steel rods must be clean, continuously threaded rods (all-thread) in diameters as described in Tables 6 and 14 and Figure 4 of this report. Steel design information for common grades of threaded rods is provided in Table 2. Carbon steel threaded rods must be furnished with a 0.0002-inch-thick (0.005 mm) zinc electroplated coating complying with ASTM B633 SC 1 or must be hot-dipped galvanized complying with ASTM A153, Class C or D. Stainless steel threaded rods must be straight and free of indentations or other defects along their length. The ends may be stamped with identifying marks and the embedded end may be blunt cut or cut on the bias to a chisel point.

3.2.5.2 Steel Reinforcing Bars for use in Post-Installed Anchor Applications: Steel reinforcing bars are deformed bars as described in Table 3 of this report. Tables 6, 14, and 22 and Figure 4 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust, mud, oil, and other coatings (other than zinc) that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in ACI 318-19 Section 26.6.3.2(b), ACI 318-14 Section 26.6.3.1(b) or ACI 318-11 Section 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

3.2.5.3 Hilti HIS-N and HIS-RN Inserts: Hilti HIS-N and HIS-RN inserts have a profile on the external surface and are internally threaded. Mechanical properties for Hilti HIS-N and HIS-RN inserts are provided in Table 4. The inserts are available in diameters and lengths as shown in Table 26 and Figure 4. Hilti HIS-N inserts are produced from carbon steel and furnished with a 0.0002-inch-thick (0.005 mm) zinc electroplated coating complying with ASTM B633 SC 1. The stainless steel Hilti HIS-RN inserts are fabricated from X5CrNiMo17122 K700 steel conforming to DIN 17440. Specifications for common bolt types that may be used in conjunction with Hilti HIS-N and HIS-RN inserts are provided in Table 5. Bolt grade and material type (carbon, stainless) must be matched to the insert. Strength reduction factors, ϕ , corresponding to brittle

steel elements must be used for Hilti HIS-N and HIS-RN inserts.

3.2.5.4 Ductility: In accordance with ACI 318 (-19 and - 14) 2.3 or ACI 318-11 D.1, as applicable, in order for a steel element to be considered ductile, the tested elongation must be at least 14 percent and reduction of area must be at least 30 percent. Steel elements with a tested elongation of less than 14 percent or a reduction of area of less than 30 percent, or both, are considered brittle. Values for various steel materials are provided in Tables 2, 3, 4, and 5 of this report. Where values are nonconforming or unstated, the steel must be considered brittle.

3.2.6 Steel Reinforcing Bars for Use in Post-Installed Reinforcing Bar Connections: Steel reinforcing bars used in post-installed reinforcing bar connections are deformed bars (rebar) as depicted in Figures 2 and 3. Tables 31, 32, 33, and Figure 4 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust, mud, oil, and other coatings that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in Section 26.6.3.2(b) of ACI 318-19, ACI 318-14 26.6.3.1(b) or ACI 318-11 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

3.3 Concrete:

Normal-weight or lightweight concrete must comply with Sections 1903 and 1905 of the IBC, as applicable. The specified compressive strength of the concrete must be from 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

4.0 DESIGN AND INSTALLATION

4.1 Strength Design of Post-Installed Anchors:

Refer to Table 1 for the design parameters for specific installed elements, and refer to Figure 5 and Section 4.1.4 for a flowchart to determine the applicable design bond strength or pullout strength.

4.1.1 General: The design strength of anchors under the 2021 IBC, as well as the 2021 IRC, must be determined in accordance with ACI 318-19 and this report. The design strength of anchors complying with the 2018 and 2015 IBC, as well as Section R301.1.3 of the 2018 and 2015 IRC must be determined in accordance with ACI 318-14 Chapter 17 and this report.

The design strength of anchors under the 2012 IBC, as well as the 2012 IRC must be determined in accordance with ACI 318-11 and this report.

Design parameters are based on ACI 318-19 for use with the 2021 IBC, ACI 318-14 for use with the 2018 and 2015 IBC, and ACI 318-11 for use with the 2012 IBC unless noted otherwise in Sections 4.1.1 through 4.1.11 of this report.

The strength design of anchors must comply with ACI 318-19 17.5.1.2, ACI 318-14 17.3.1 or ACI 318-11 D.4.1 as applicable, except as required in ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable.

Design parameters are provided in Table 6A through Table 30. Strength reduction factors, ϕ , as given in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, must be used for load combinations calculated in accordance with Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, and 2012 IBC or ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as applicable. Strength reduction factors, ϕ , as given in ACI 318-11 D.4.4 must be used for load combinations calculated in accordance with ACI 318-11 D.4.4 must be used for load combinations calculated in accordance with ACI 318-11 Appendix C.

4.1.2 Static Steel Strength in Tension: The nominal static steel strength of a single anchor in tension, N_{sa} , in

accordance with ACI 318-19 17.6.1.2, ACI 318-14 17.4.1.2 or ACI 318-11 Section D.5.1.2, as applicable, and the associated strength reduction factors, ϕ , in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 Section D.4.3, as applicable, are provided in the tables outlined in Table 1 for the anchor element types included in this report.

4.1.3 Static Concrete Breakout Strength in Tension: The nominal concrete breakout strength of a single anchor or group of anchors in tension, N_{cb} or N_{cbg} , must be calculated in accordance with ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, with the following addition:

The basic concrete breakout strength of a single anchor in tension, N_b , must be calculated in accordance with ACI 318-19 17.6.2.2, ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable using the values of $k_{c,cr}$, and $k_{c,uncr}$, as described in this report. Where analysis indicates no cracking in accordance with ACI 318-19 17.6.2.5, ACI 318-14 17.4.2.6 or ACI 318-11 D.5.2.6, as applicable, N_b must be calculated using $k_{c,uncr}$ and $\Psi_{c,N} = 1.0$. See Table 1. For anchors in lightweight concrete, see ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable. The value of f_c used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318-19 17.3.1, ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable. Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

4.1.4 Static Bond Strength in Tension: The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension, N_a or N_{ag} , must be calculated in accordance with ACI 318-19 17.6.5, ACI 318-14 17.4.5 or ACI 318-11 D.5.5, as applicable. Bond strength values are a function of the concrete compressive strength, whether the concrete is cracked or uncracked, the concrete temperature range, the drilling method, and the installation conditions (dry or water-saturated, etc.). The resulting characteristic bond strength shall be multiplied by the associated strength reduction factor ϕ_{nn} as follows:

DRILLING METHOD	CONCRETE TYPE			ASSOCIATED STRENGTH REDUCTION FACTOR	
	Dry		T _{k,uncr} or Tk,cr	$\phi_{ m d}$	
Hammer-drill	Cracked and	Water-saturated	Tk,uncr or Tk,cr	Øws	
	Uncracked	Uncracked Water-filled hole		Tk,uncr or Tk,cr	Øwf
		Underwater application	Tk,uncr or Tk,cr	фиw	
Core Drilled with Roughening Tool	Cracked and	Dry	Tk,uncr or Tk,cr	ϕ_{d}	
or Hilti TE- CD or TE-YD Hollow Drill Bit	Uncracked	Water-saturated	Tk,uncr or Tk,cr	Øws	
Core Drilled	Uncracked	Dry	Tk,uncr	ϕ_{d}	
Core Drilled	Uncracked	Water-saturated	Tk,uncr	Øws	

Figure 5 of this report presents a bond strength design selection flowchart. Strength reduction factors for determination of the bond strength are outlined in Table 1 of this report. Adjustments to the bond strength may also be made for increased concrete compressive strength as noted in the footnotes to the bond strength tables.

4.1.5 Static Steel Strength in Shear: The nominal static strength of a single anchor in shear as governed by the steel, V_{sa} , in accordance with ACI 318-19 17.7.1.2, ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable, and strength reduction factors, ϕ , in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are given in the tables outlined in Table 1 for the anchor element types included in this report.

4.1.6 Static Concrete Breakout Strength in Shear: The nominal static concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg}, must be calculated in accordance with ACI 318-19 17.7.2, ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, based on information given in the tables outlined in Table 1. The basic concrete breakout strength of a single anchor in shear, V_{b} , must be calculated in accordance with ACI 318-19 17.7.2.2, ACI 318-14 17.5.2.2 or ACI 318-11 D.6.2.2, as applicable, using the values of d given in the tables as outlined in Table 1 for the corresponding anchor steel in lieu of d_a (2021, 2018, 2015, and 2012 IBC). In addition, hef must be substituted for ℓ_e . In no case must ℓ_e exceed 8d. The value of f_c must be limited to a maximum of 8,000 psi (55 MPa) in accordance with ACI 318-19 17.3.1, ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable.

4.1.7 Static Concrete Pryout Strength in Shear: The nominal static pryout strength of a single anchor or group of anchors in shear, V_{cp} or V_{cpg} , must be calculated in accordance with ACI 318-19 17.7.3, ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable.

4.1.8 Interaction of Tensile and Shear Forces: For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-19 17.8, ACI 318-14 17.6 or ACI 318-11 D.7, as applicable.

4.1.9 Minimum Member Thickness, h_{min} , Anchor Spacing, s_{min} and Edge Distance, c_{min} : In lieu of ACI 318-19 17.9.2, ACI 318-14 17.7.1 and 17.7.3 or ACI 318-11 D.8.1 and D.8.3, as applicable, values of s_{min} and c_{min} described in this report must be observed for anchor design and installation. Likewise, in lieu of ACI 318-19 17.9.4, ACI 318-14 17.7.5 or ACI 318-11 D.8.5, as applicable, the minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. For adhesive anchors that will remain untorqued, ACI 318-19 17.9.3, ACI 318-14 17.7.4 or ACI 318-11 D.8.4, as applicable, applies.

For edge distances c_{ai} and anchor spacing s_{ai} , the maximum torque T_{max} shall comply with the following requirements:

REDUCED MAXIMUM INSTALLATION TORQUE $T_{max,red}$ FOR EDGE DISTANCES $c_{ai} < (5 \times d_a)$						
EDGE DISTANCE, Cai	MINIMUM ANCHOR SPACING, <i>s</i> ai	MAXIMUM TORQUE, T _{max,red}				
1.75 in. (45 mm) ≤ <i>c_{ai}</i> < 5 x <i>d_a</i>	5 x <i>d</i> _a ≤ s _{ai} < 16 in.	0.3 x <i>T_{max}</i>				
	<i>s_{ai}</i> ≥ 16 in. (406 mm)	0.5 x T _{max}				

4.1.10 Critical Edge Distance c_{ac} : In lieu of ACI 318-19 17.9.5, ACI 318-14 17.7.6 or ACI 318-11 D.8.6, as applicable, c_{ac} must be determined as follows:

$$c_{ac} = h_{ef} \cdot \left(\frac{T_{k,uncr}}{1160}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$$
 Eq. (4-1)

where $\left|\frac{h}{h_{ef}}\right|$ need not be taken as larger than 2.4: and

 $\tau_{k,uncr}$ is the characteristic bond strength in uncracked concrete stated in the tables of this report, whereby $\tau_{k,uncr}$ need not be taken as greater than:

$$T_{k,uncr} = \frac{k_{uncr} \sqrt{h_{ef} \cdot f_c}}{\pi \cdot d_a}$$

4.1.11 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, the design must be performed according to ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 Section D.3.3, as applicable. Modifications to ACI 318-19 17.10 and ACI 318-14 17.2.3 shall be applied under Section 1905.1.8 of the 2021, 2018 and 2015 IBC. For the 2012 IBC, Section 1905.1.9 shall be omitted.

The nominal steel shear strength, V_{sa} , must be adjusted by $\alpha_{V,seis}$ as given in the tables summarized in Table 1 for the anchor element types included in this report. For tension, the nominal pullout strength $N_{p,cr}$ or bond strength τ_{cr} must be adjusted by $\alpha_{N,seis}$. See Tables 8, 9, 11, 12, 16, 17, 19, 20, 24, 28 and 29.

Modify ACI 318-11 Sections D.3.3.4.2, D.3.3.4.3(d) and D.3.3.5.2 to read as follows:

ACI 318-11 D.3.3.4.2 - Where the tensile component of the strength-level earthquake force applied to anchors exceeds 20 percent of the total factored anchor tensile force associated with the same load combination, anchors and their attachments shall be designed in accordance with ACI 318-11 D.3.3.4.3. The anchor design tensile strength shall be determined in accordance with ACI 318-11 D.3.3.4.4

Exception:

1. Anchors designed to resist wall out-of-plane forces with design strengths equal to or greater than the force determined in accordance with ASCE 7 Equation 12.11-1 or 12.14-10 shall be deemed to satisfy ACI 318-11 D.3.3.4.3(d).

ACI 318-11 D.3.3.4.3(d) – The anchor or group of anchors shall be designed for the maximum tension obtained from design load combinations that include E, with E increased by Ω_0 . The anchor design tensile strength shall be calculated from ACI 318-11 D.3.3.4.4.

ACI 318-11 D.3.3.5.2 – Where the shear component of the strength-level earthquake force applied to anchors exceeds 20 percent of the total factored anchor shear force associated with the same load combination, anchors and their attachments shall be designed in accordance with ACI 318-11 D.3.3.5.3. The anchor design shear strength for resisting earthquake forces shall be determined in accordance with ACI 318-11 D.6.

Exceptions:

1. For the calculation of the in-plane shear strength of anchor bolts attaching wood sill plates of bearing or non-bearing walls of light-frame wood structures to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3 need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:

1.1. The allowable in-plane shear strength of the anchor is determined in accordance with AF&PA NDS Table 11E for lateral design values parallel to grain. 1.3. Anchor bolts are embedded into concrete a minimum of 7 inches (178 mm).

1.4. Anchor bolts are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the wood sill plate.

1.5. Anchor bolts are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the wood sill plate.

1.6. The sill plate is 2-inch or 3-inch nominal thickness.

2. For the calculation of the in-plane shear strength of anchor bolts attaching cold-formed steel track of bearing or non-bearing walls of light-frame construction to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3, need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:

2.1. The maximum anchor nominal diameter is $\frac{5}{8}$ inch (16 mm).

2.2. Anchors are embedded into concrete a minimum of 7 inches (178 mm).

2.3. Anchors are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the track.

2.4. Anchors are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the track.

2.5. The track is 33 to 68 mil designation thickness.

Allowable in-plane shear strength of exempt anchors, parallel to the edge of concrete shall be permitted to be determined in accordance with AISI S100 Section E3.3.1.

3. In light-frame construction, bearing or nonbearing walls, shear strength of concrete anchors less than or equal to 1 inch [25 mm] in diameter attaching a sill plate or track to foundation or foundation stem wall need not satisfy ACI 318-11 D.3.3.5.3(a) through (c) when the design strength of the anchors is determined in accordance with ACI 318-11 D.6.2.1(c).

4.2 Strength Design of Post-Installed Reinforcing Bars:

4.2.1 General: The design of straight post-installed deformed reinforcing bars must be determined in accordance with ACI 318 rules for cast-in place reinforcing bar development and splices and this report.

Examples of typical applications for the use of post-installed reinforcing bars are illustrated in Figures 2 and 3 of this report.

4.2.2 Determination of bar development length I_d : Values of I_d must be determined in accordance with the ACI 318 development and splice length requirements for straight cast-in place reinforcing bars.

Exceptions:

1. For uncoated and zinc-coated (galvanized) post-installed reinforcing bars, the factor Ψ_e shall be taken as 1.0. For all other cases, the requirements in ACI 318-19 25.4.2.5, ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (b) shall apply.

2. When using alternate methods to calculate the development length (e.g., anchor theory), the applicable factors for post-installed anchors generally apply.

4.2.3 Minimum Member Thickness, h_{min} , **Minimum Concrete Cover**, $c_{c,min}$, **Minimum Concrete Edge Distance**, $c_{b,min}$, **Minimum Spacing**, $s_{b,min}$: For post-installed reinforcing bars, there is no limit on the minimum member thickness. In general, all requirements on concrete cover and spacing applicable to straight cast-in bars designed in accordance with ACI 318 shall be maintained.

For post-installed reinforcing bars installed at embedment depths, h_{ef} , larger than 20d (h_{ef} > 20d), the minimum concrete cover shall be as follows:

REBAR SIZE	MINIMUM CONCRETE COVER, C _{c,min}
d _b ≤ No. 6 (16 mm)	1 ³ / ₁₆ in. (30mm)
No. $6 < d_b \le No. 10$	1º/ ₁₆ in.
(16mm < d₅ ≤ 32mm)	(40mm)

The following requirements apply for minimum concrete edge and spacing for $h_{ef} > 20d$:

Required minimum edge distance for post-installed reinforcing bars (measured from the center of the bar):

$c_{b,min} = d_0/2 + c_{c,min}$

Required minimum center-to-center spacing between post-installed bars:

 $S_{b,min} = d_0 + C_{c,min}$

Required minimum center-to-center spacing from existing (parallel) reinforcing:

 $s_{b,min} = d_b/2$ (existing reinforcing) + $d_0/2$ + $c_{c,min}$

All other requirements applicable to straight cast-in place bars designed in accordance with ACI 318 shall be maintained.

4.2.4 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Category C, D, E or F under the IBC or IRC, design of straight post-installed reinforcing bars must take into account the provisions of ACI 318 (-19 or -14) Chapter 18 or ACI 318-11 Chapter 21, as applicable.

4.2.5 Design in Fire Resistive Construction: For postinstalled reinforcing bars, the relationship of bond stress to temperature under fire conditions for short term loading (including seismic), suitable for use in determining conformance with fire resistance rating requirements is as follows (see Figures 6A and 6B):

$\tau_{fire(\theta)} = 1,137,318 \cdot \theta^{-1.47}$	(psi)
$\tau_{fire(\theta)} = 522.93 \cdot \theta^{-1.14}$	(N/mm²)

Where θ is the temperature in the concrete at the postinstalled reinforcing bar in °F (for psi) or °C (for N/mm²), as applicable.

For temperatures above θ_{max} of 581 °F (305 °C), $\tau_{fire(\theta)}=0$. For load cases including sustained loads, with or without short term loading, multiply $\tau_{fire(\theta)}$ by 0.93.

The bond stress, $T_{fire(\theta)}$, shall not exceed 1,090 psi (7.5 N/mm²).

Determination of the temperature in the concrete at the location of the post-installed reinforcing bar is dependent on the geometry of the concrete members under consideration, and its calculation is the responsibility of the design professional. The design professional shall use the bond strength / temperature curves in Figure 6 along with a determination of the temperature in the concrete appropriate for the member geometry under consideration to calculate the reinforcing bar development length I_d .

4.3 Installation:

Installation parameters are illustrated in Figures 1 and 4. Installation must be in accordance with ACI 318-19 26.7.2, ACI 318-14 17.8.1 and 17.8.2 or ACI 318-11 D.9.1 and D.9.2, as applicable. Anchor and post-installed reinforcing bar locations must comply with this report and the plans and specifications approved by the code official. Installation of the Hilti HIT-RE 500 V3 Adhesive Anchor and Post-Installed Reinforcing Bar Systems must conform to the manufacturer's printed installation instructions (MPII) included in each unit package consolidated as Figures 8A and 8B of this report. The MPII contains additional requirements for combinations of drill hole depth, diameter, drill bit type, hole preparation, and dispensing tools.

The initial cure time, $t_{cure,ini}$, as noted in Figure 8A of this report, is intended for rebar applications only and is the time where rebar and concrete formwork preparation may continue. Between the initial cure time and the full cure time, $t_{cure,final}$, the adhesive has a limited load bearing capacity. Do not apply a torque or load on the rebar during this time

4.4 Special Inspection:

Periodic special inspection must be performed where required in accordance with Section 1705.1.1 and Table 1705.3 of the 2021, 2018, 2015 and 2012 IBC, as applicable, and this report. The special inspector must be on the jobsite initially during anchor or post-installed reinforcing bar installation to verify anchor or post-installed reinforcing bar type and dimensions, concrete type, concrete compressive strength, adhesive identification and expiration date, hole dimensions, hole cleaning procedures, spacing, edge distances, concrete thickness, anchor or post-installed reinforcing bar embedment, tightening torque and adherence to the manufacturer's printed installation instructions.

The special inspector must verify the initial installations of each type and size of adhesive anchor or post-installed reinforcing bar by construction personnel on site. Subsequent installations of the same anchor or post-installed reinforcing bar type and size by the same construction personnel are permitted to be performed in the absence of the special inspector. Any change in the anchor or post-installed reinforcing bar product being installed or the personnel performing the installation requires an initial inspection. For ongoing installations over an extended period, the special inspector must make regular inspections to confirm correct handling and installation of the product.

Continuous special inspection of adhesive anchors or post-installed reinforcing bar installed in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed in accordance with ACI 318-19 26.13.3.2(e) and 26.7.1(j), ACI 318-14 17.8.2.4, 26.7.1(h), and 26.13.3.2(c) or ACI 318-11 D.9.2.4, as applicable.

Under the IBC, additional requirements as set forth in Sections 1705, 1706, and 1707 must be observed, where applicable.

5.0 CONDITIONS OF USE

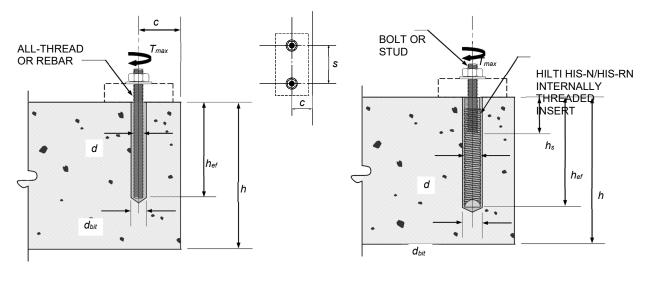
The Hilti HIT-RE 500 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System described in this report complies with, or is a suitable alternative to what is specified in, the codes listed in Section 1.0 of this report, subject to the following conditions:

5.1 Hilti HIT-RE 500 V3 Adhesive anchors and post-installed reinforcing bars must be installed in accordance with the manufacturer's printed installation instructions (MPII) as included in the adhesive packaging and consolidated as Figures 8A and 8B of this report.

- **5.2** The anchors and post-installed reinforcing bars must be installed in cracked and uncracked normal-weight concrete having a specified compressive strength f'_c = 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).
- **5.3** The values of f_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa).
- 5.4 The concrete shall have attained its minimum design strength prior to installation of the Hilti HIT-RE 500 V3 adhesive anchors or post-installed reinforcing bars.
- **5.5** Anchors and post-installed reinforcing bars must be installed in concrete base materials in holes drilled using carbide-tipped drill bits manufactured with the range of maximum and minimum drill-tip dimensions specified in ANSI B212.15-1994, or diamond core drill bits, as detailed in Figure 8A. Use of the Hilti TE-YRT Roughening Tool in conjunction with diamond core bits must be as detailed in Figure 8B.
- **5.6** Loads applied to the anchors must be adjusted in accordance with Section 1605.1 of the 2021 IBC or Section 1605.2 of the 2018, 2015 and 2012 IBC for strength design and in accordance with Section 1605.1 of the 2021 IBC or Section 1605.3 of the 2018, 2015, and 2012 IBC for allowable stress design.
- **5.7** Hilti HIT-RE 500 V3 adhesive anchors and post-installed reinforcing bars are recognized for use to resist short- and long-term loads, including wind and earthquake, subject to the conditions of this report.
- **5.8** In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchor strength must be adjusted in accordance with Section 4.1.11 of this report, and post-installed reinforcing bars must comply with section 4.2.4 of this report.
- **5.9** Hilti HIT-RE 500 V3 adhesive anchors and post-installed reinforcing bars are permitted to be installed in concrete that is cracked or that may be expected to crack during the service life of the anchor, subject to the conditions of this report.
- **5.10** Anchor strength design values must be established in accordance with Section 4.1 of this report.
- **5.11** Post-installed reinforcing bar development and splice length is established in accordance with Section 4.2 of this report.
- **5.12** Minimum anchor spacing and edge distance as well as minimum member thickness must comply with the values noted in this report.
- **5.13** Post-installed reinforcing bar spacing, minimum member thickness, and cover distance must be in accordance with the provisions of ACI 318 for cast-in place bars and section 4.2.3 of this report.
- **5.14** Prior to anchor installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- **5.15** Anchors and post-installed reinforcing bars are not permitted to support fire-resistive construction. Where not otherwise prohibited by the code, Hilti HIT-RE 500 V3 adhesive anchors and post-installed reinforcing bars are permitted for installation in fire-resistive construction provided that at least one of the following conditions is fulfilled:
 - Anchors and post-installed reinforcing bars are used to resist wind or seismic forces only.

- Anchors and post-installed reinforcing bars that support gravity load-bearing structural elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
- Anchors and post-installed reinforcing bars are used to support nonstructural elements.
- Post-installed reinforcing bars designed in accordance with Section 4.2.5 of this report.
- **5.16** Since an ICC-ES acceptance criteria for evaluating data to determine the performance of adhesive anchors and post-installed reinforcing bars subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.
- **5.17** Use of zinc-plated carbon steel threaded rods or steel reinforcing bars is limited to dry, interior locations.
- **5.18** Use of hot-dipped galvanized carbon steel and stainless steel rods is permitted for exterior exposure or damp environments.
- 5.19 Steel anchoring materials in contact with preservative-treated and fire-retardant-treated wood must be of zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153. Periodic special inspection must be provided in accordance with Section 4.4 of this report. Continuous special inspection for anchors and post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be provided in accordance with Section 4.4 of this report.
- **5.20** Installation of anchors and post-installed reinforcing bars in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed by personnel certified by an applicable certification program in accordance with ACI 318-19 26.7.2(e), ACI 318-14 17.8.2.2 or 17.8.2.3, or ACI 318-11 D.9.2.2 or D.9.2.3, as applicable.
- 5.21 Hilti HIT-RE 500 V3 adhesive anchors and post-installed reinforcing bars may be used to resist tension and shear forces in floor, wall, and overhead installations only if installation is into concrete with a temperature between 23°F and 104°F (-5°C and 40°C) for threaded rods, rebar, and Hilti HIS-(R)N inserts. Overhead installations for hole diameters larger than ⁷/₁₆-inch or 10mm require the use of piston plugs (HIT-SZ, -IP) during injection to the back of the hole. $7/_{16}$ inch or 10mm diameter holes may be injected directly to the back of the hole with the use of extension tubing on the end of the nozzle. The anchor or post-installed reinforcing bars must be supported until fully cured (i.e., with Hilti HIT-OHW wedges, or other suitable means). Where temporary restraint devices are used, their use shall not result in imparement of the anchor resistance. Installations shear in concrete temperatures below 41°F (5°C) require the adhesive to be conditioned to a minimum temperature of 41°F (5°C).
- 5.22 Anchors and post-installed reinforcing bars shall not be used for applications where the concrete temperature can rise from 40°F or less to 80°F or higher within a 12-hour period. Such applications may include but are not limited to anchorage of building façade systems and other applications subject to direct sun exposure.

- **5.23** Hilti HIT-RE 500 V3 adhesives are manufactured by Hilti GmbH, Kaufering, Germany, under a quality-control program with inspections by ICC-ES.
- **5.24** Hilti HIS-N and HIS-RN inserts are manufactured by Hilti (China) Ltd., Guangdong, China, under a quality-control program with inspections by ICC-ES.


6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Post-installed Adhesive Anchors and Reinforcing Bars in Concrete Elements (AC308), dated October 2022, which incorporates requirements in ACI 355.4 (-19 and -11), including but not limited to tests under freeze/thaw conditions (Table 3.2, test series 6), and Table 3.8 for evaluating post-installed reinforcing bars including test series 15 for effects of fire on bond stress.

7.0 IDENTIFICATION

7.1 The ICC-ES mark of conformity, electronic labeling, or the evaluation report number (ICC-ES ESR-3814) along with the name, registered trademark, or registered logo of the report holder must be included in the product label.

- **7.2** In addition, Hilti HIT-RE 500 V3 adhesive is identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, product name, lot number, expiration date.
- **7.3** Hilti HIS-N and HIS-RN inserts are identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, anchor name and size, and evaluation report number (ESR-3814). Threaded rods, nuts, washers, bolts, cap screws, and deformed reinforcing bars are standard elements and must conform to applicable national or international specifications.
- 7.4 The report holder's contact information is the following: HILTI, INC.
 7250 DALLAS PARKWAY, SUITE 1000 PLANO, TEXAS 75024 (800) 879-8000 www.hilti.com

THREADED ROD/REINFORCING BAR

FIGURE 1—INSTALLATION PARAMETERS FOR POST-INSTALLED ADHESIVE ANCHORS

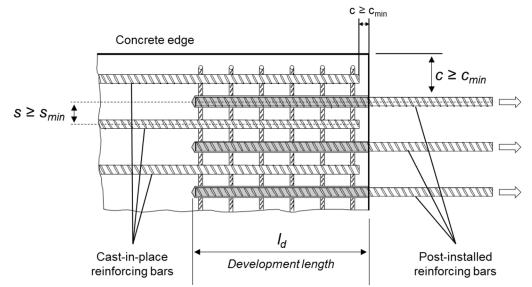


FIGURE 2—INSTALLATION PARAMETERS FOR POST-INSTALLED REINFORCING BARS

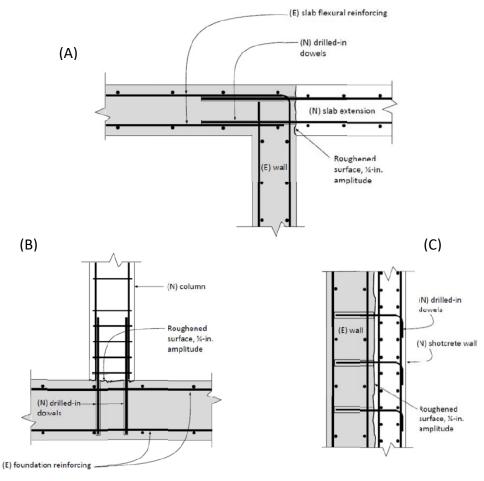
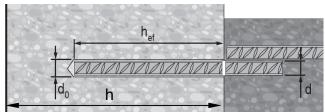



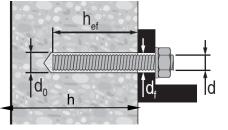
FIGURE 3—(A) TENSION LAP SPLICE WITH EXISTING FLEXURAL REINFORCEMENT; (B) TENSION DEVELOPMENT OF COLUMN DOWELS; (C) DEVELOPMENT OF SHEAR DOWELS FOR NEW ONLAY SHEAR WALL

DEFORMED REINFORCMENT

EU Rebar

Ø d [mm]	Ø d₀ [mm]	h _{ef} [mm]
8	12	60480
10	14	60600
12	16	70720
14	18	75840
16	20	80960
18	22	851080
20	25	901200
22	28	951320
24	32	961440
25	32	1001500
26	35	1041560
28	35	1121680
30	37	1201800
32	40	1281920

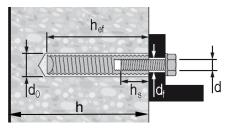
US	Rebar	
		-


	Ø d₀	h _{ef}
d	[inch]	[inch]
#3	1/2	2 ³ /822 ¹ /2
#4	5/8	2 ³ /430
#5	3/4	3 1/837 1/2
#6	7/8	31/215
#0	1	1545
#7	1	3 1/217 1/2
# /	1 1/8	17 ¹ /252 ¹ /2
#8	1 1/8	420
#0	1 1/4	2060
#9	1 3/8	4 1/267 1/2
# 10	1 1/2	575
# 11	1 3⁄4	5 1/282 1/2

CA Rebar

	~ 1	
	Ø d₀	h _{ef}
d	[inch]	[mm]
10 M	⁹ / ₁₆	70678
15 M	3/4	80960
20 M	1	901170
25 M	1 1/4 (32 mm)	1011512
30 M	1 1/2	1201794

THREADED ROD


HAS / HIT-V

Ø d [inch]	Ø d₀ [inch]	h _{ef} [inch]	Ø d _f [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	7/16	2 ³ / ₈ 7 ¹ / ₂	⁷ / ₁₆	15	20
1/2	⁹ /16	2 ³ ⁄410	⁹ /16	30	41
5/8	3/4	3 1/8 12 1/2	11/16	60	81
3/4	7/8	31/215	¹³ /16	100	136
7/8	1	31/2 171/2	¹⁵ /16	125	169
1	1 ¹ /8	4 20	1 1/8	150	203
1 1/4	1 3/6	5 25	1 3/6	200	271

HIT-V

Ø d [mm]	Ø d₀ [mm]	h _{ef} [mm]	Ø d _f [mm]	T _{max} [Nm]
M8	10	60160	9	10
M10	12	60200	12	20
M12	14	70240	14	40
M16	18	80320	18	80
M20	22	90400	22	150
M24	28	100480	26	200
M27	30	110540	30	270
M30	35	120600	33	300

HILTI HIS-N AND HIS-RN THREADED INSERTS

Ø d [inch]	Ø d₀ [inch]	h _{ef} [inch]	Ø d _f [inch]	h _s [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	11/16	4 ³ /8	7/16	³ /8 ¹⁵ /16	15	20
1/2	7/8	5	⁹ /16	¹ /21 ³ /16	30	41
5/8	1 ¹ /8	6 ³ /4	11/16	5/81 1/2	60	81
3/4	1 ¹ ⁄4	8 ¹ /8	¹³ /16	³ /41 ⁷ /8	100	136

Ø d [mm]	Ø d₀ [mm]	h _{ef} [mm]	Ø d _f [mm]	h _s [mm]	T _{max} [Nm]
M8	14	90	9	820	10
M10	18	110	12	1025	20
M12	22	125	14	1230	40
M16	28	170	18	1640	80
M20	32	205	22	2050	150

FIGURE 4—INSTALLATION PARAMETERS (Continued)

TABLE 1—DESIGN TABLE INDEX

Decise 7	-	Fract	tional	Ме	tric
Design 1	able	Table	Page	Table	Page
Standard Threaded Rod	Steel Strength - Nsa, Vsa	6A	13	14	20
	Concrete Breakout - N _{cb} , N _{cbg} , V _{cb} , V _{cbg} , V _{cp} , V _{cpg}	7	15	15	21
	Bond Strength - Na, Nag	11-13	18-19	19-21	25-26
Hilti HIS-N and HIS-RN Internally Threaded Insert	Steel Strength - Nsa, Vsa	26	30	26	30
	Concrete Breakout - N _{cb} , N _{cbg} , V _{cb} , V _{cbg} , V _{cp} , V _{cpg}	27	31	27	31
	Bond Strength - Na, Nag	28-30	32-33	28-30	32-33

Decimal	Design Table						adian
Design	Table	Page	Table	Page	Table	Page	
Steel Reinforcing Bars	Steel Strength - Nsa, Vsa	6B	14	14	20	22	27
	Concrete Breakout - N _{cb} , N _{cbg} , V _{cb} , V _{cbg} , V _{cp} , V _{cpg}	7	15	15	21	23	27
र्वत्र स्थिति हो स्थिति हो हो हो को साथ हो। यह स्थित के स्थिति के स्थित के स्थित के स्थित के स्थित के स्थित के	Bond Strength - Na, Nag	8-10	16-17	16-18	22-24	24-25B	28-29
	Determination of development length for post-installed reinforcing bar connections	31	34	32	34	33	35

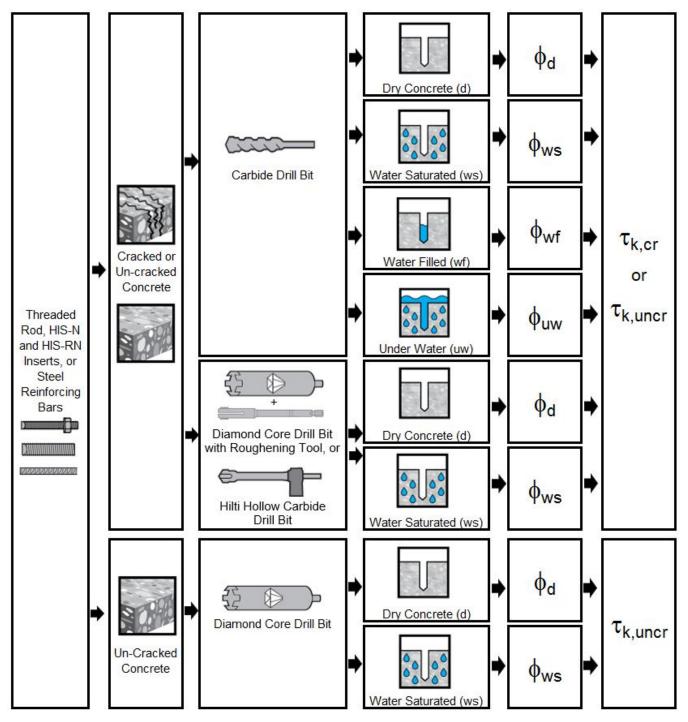


FIGURE 5—FLOWCHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL THREADED ROD MATERIALS¹

	EADED ROD SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength 0.2 percent offset, fya	f _{uta} /f _{ya}	Elongation, min. percent ⁷	Reduction of Area, min. percent	Specification for nuts ⁸
	ASTM A193 ² Grade B7 ≤ 2 ¹ /₂ in. (≤ 64 mm)	psi (MPa)	125,000 (862)	105,000 (724)	1.19	16	50	ASTM A563 Grade DH
	ASTM F568M ³ Class 5.8 M5 (¹ / ₄ in.) to M24 (1 in.) (equivalent to ISO 898-1)	psi (MPa)	72,500 (500)	58,000 (400)	1.25	10	35	ASTM A563 Grade DH ⁹ DIN 934 (8-A2K)
STEEL	ASTM F1554, Grade 36 ⁷	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40	ASTM A194 or ASTM A563
s NO	ASTM F1554, Grade 55 ⁷	psi (MPa)	75,000 (517)	55,000 (379)	1.36	21	30	ASTM A194 or ASTM A563
CARBON	ASTM F1554, Grade 105 ⁷	psi (MPa)	125,000 (862)	105,000 (724)	1.19	15	45	ASTM A194 or ASTM A563
	ISO 898-1⁴Class 5.8	MPa (psi)	500 (72,500)	400 (58,000)	1.25	22	-	DIN 934 Grade 6
	ISO 898-1 ⁴ Class 8.8	MPa (psi)	800 (116,000)	640 (92,800)	1.25	12	52	DIN 934 Grade 8
	ASTM F593 ⁵ CW1 (316) ¹ / ₄ -in. to ⁵ / ₈ -in.	psi (MPa)	100,000 (689)	65,000 (448)	1.54	20	-	ASTM F594
STEEL	ASTM F593 ⁵ CW2 (316) ³ / ₄ -in. to 1 ¹ / ₂ -in.	psi (MPa)	85,000 (586)	45,000 (310)	1.89	25	-	ASTM F594
	ASTM A193 Grade 8(M), Class 1² - 1 ¼-in.	psi (MPa)	75,000 (517)	30,000 (207)	2.50	30	50	ASTM F594
STAINLESS	ISO 3506-1 ⁶ A4-70 M8 – M24	MPa (psi)	700 (101,500)	450 (65,250)	1.56	40	-	ISO 4032
ST	ISO 3506-1 ⁶ A4-50 M27 – M30	MPa (psi)	500 (72,500)	210 (30,450)	2.38	40	-	ISO 4032

¹Hilti HIT-RE 500 V3 adhesive may be used in conjunction with all grades of continuously threaded carbon or stainless steel rod (all-thread) that comply with the code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

²Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

³Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners

⁴Mechanical properties of fasteners made of carbon steel and alloy steel – Part 1: Bolts, screws and studs

⁵Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs

⁶Mechanical properties of corrosion-resistant stainless steel fasteners – Part 1: Bolts, screws and studs

⁷Based on 2-in. (50 mm) gauge length except for A 193, which are based on a gauge length of 4d and ISO 898, which is based on 5d.

⁸Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

9Nuts for fractional rods.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS

REINFORCING BAR SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength, f _{ya}
ASTM A615 ¹ Gr. 60	psi	80,000	60,000
ASTM A015 GI. 00	(MPa)	(550)	(414)
ASTM A615 ¹ Gr. 40	psi	60,000	40,000
ASTM A615' Gr. 40	(MPa)	(414)	(276)
ASTM A706 ² Gr. 60	psi	80,000	60,000
ASTM A700- Gr. 60	(MPa)	(550)	(414)
	MPa	550	500
DIN 488 ³ BSt 500	(psi)	(79,750)	(72,500)
CAN/CCA C20 494 Cr. 400	MPa	540	400
CAN/CSA-G30.18 ⁴ Gr. 400	(psi)	(78,300)	(58,000)

¹Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement

²Standard Specification for Low Alloy Steel Deformed and Plain Bars for Concrete Reinforcement

³Reinforcing steel; reinforcing steel bars; dimensions and masses

⁴Billet-Steel Bars for Concrete Reinforcement

TABLE 4-SPECIFICATIONS AND PHYSICAL PROPERTIES OF FRACTIONAL AND METRIC HIS-N AND HIS-RN INSERTS

HILTI HIS-N AND HIS-RN INSERTS

		Minimum specified ultimate strength, <i>f_{uta}</i>	Minimum specified yield strength, <i>f_{ya}</i>
Carbon Steel DIN EN 10277-3 11SMnPb30+c or DIN	psi	71,050	56,550
1561 9SMnPb28K	(MPa)	(490)	(390)
Stainless Steel	psi	101,500	50,750
EN 10088-3 X5CrNiMo 17-12-2	(MPa)	(700)	(350)

TABLE 5—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON BOLTS, CAP SCREWS AND STUDS FOR USE WITH HIS-N AND HIS-RN INSERTS^{1,2}

BOLT, CAP SCREW OR STUD SPECIFICATION		Minimum specified ultimate strength f _{uta}	Minimum specified yield strength 0.2 percent offset f _{ya}	f _{uta} /f _{ya}	Elongation, min.	Reduction of Area, min.	Specification for nuts ⁶
ASTM A193 Grade B7	psi	125,000	105,000	1,119	16	50	ASTM A563 Grade DH
	(MPa)	(862)	(724)	1.110	10	00	
SAE J429 ³ Grade 5	psi	120,000	92,000	1.30	14	35	SAE J995
SAL J429 Glade J	(MPa)	(828)	(634)	1.50	14	55	SAE 1995
ASTM A325 ⁴ ¹ / ₂ to 1-in.	psi	120,000	92,000	1.30	14	35	A563 C, C3, D, DH,
ASTIVI AS25 72 10 1-11.	(MPa)	(828)	(634)	1.50	14	55	DH3 Heavy Hex
ASTM A193 ⁵ Grade B8M (AISI	psi	110,000	95,000	1.16	15	45	ASTM F594 ⁷
316) for use with HIS-RN	(MPa)	(759)	(655)	1.10	15	45	Alloy Group 1, 2 or 3
ASTM A193 ⁵ Grade B8T (AISI	psi	125,000	100,000	1.25	12	35	ASTM F594 ⁷
321) for use with HIS-RN	(MPa)	(862)	(690)	1.20	12	30	Alloy Group 1, 2 or 3

¹Minimum Grade 5 bolts, cap screws or studs must be used with carbon steel HIS inserts. ²Only stainless steel bolts, cap screws or studs must be used with HIS-RN inserts. ³Mechanical and Material Requirements for Externally Threaded Fasteners ⁴Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength ⁵Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service ⁶Nuts must have specified minimum proof load stress equal to or greater than the specified minimum full-size tensile strength of the specified stud.

⁷Nuts for stainless steel studs must be of the same alloy group as the specified bolt, cap screw, or stud.

Fractional Threaded Rod

Steel Strength

TABLE 6A—STEEL DESIGN INFORMATION FOR FRACTIONAL THREADED ROD

ASTM F1554 ASTM A193 B7 ISO 898-1 Gr. 55 Gr. 36 ASTM A193 B7 ISO 898-1 ASTM A193 B7 Class 5.8 ASTM A193 B7 Class 5	cross-sectional area ominal strength as governed by steel rength eduction for seismic shear trength reduction factor ϕ for tension ² trength reduction factor ϕ for shear ² ominal strength as governed by steel rength eduction for seismic shear trength reduction factor ϕ for tension ³ trength reduction factor ϕ for tension ³	Symbol d A _{se} N _{sa} V _{sa} φ N _{sa} V _{sa} V _{sa}	Units in. (mm) in. ² (mm ²) Ib (kN) - - - Ib (kN) - - - - - - - - - - - - -	3/8 0.375 (9.5) 0.0775 (50) 5,620 (25.0) 3,370 (15.0) 9,685	1/2 0.5 (12.7) 0.1419 (92) 10,290 (45.8) 6,175 (27.5)	⁵ / ₈ 0.625 (15.9) 0.2260 (146) 16,385 (72.9) 9,830 (43.7)	3/4 0.75 (19.1) 0.3345 (216) 24,250 (107.9) 14,550 (64.7) 1.0	7/8 0.875 (22.2) 0.4617 (298) 33,470 (148.9) 20,085 (89.3)	1 (25.4) 0.6057 (391) 43,910 (195.3) 26,345 (117.2)	11/4 1.25 (31.8) 0.9691 (625) 70,260 (312.5) 42,155 (187.5)
ASTM F1554 ASTM A193 B7 Gr. 55 Gr. 36 Gr. 55 Gr. 36 ASTM A193 B7 Class 5.8 ASTM A193 B7 ASTM A19	pominal strength as governed by steel rength eduction for seismic shear rength reduction factor ϕ for tension ² rength reduction factor ϕ for shear ² pominal strength as governed by steel rength eduction for seismic shear rength reduction factor ϕ for tension ³	A _{se} N _{sa} V _{sa} ϕ N _{sa} V _{sa}	(mm) in. ² (mm ²) lb (kN) - - - - lb (kN)	(9.5) 0.0775 (50) 5,620 (25.0) 3,370 (15.0)	(12.7) 0.1419 (92) 10,290 (45.8) 6,175	(15.9) 0.2260 (146) 16,385 (72.9) 9,830	(19.1) 0.3345 (216) 24,250 (107.9) 14,550 (64.7) 1.0	(22.2) 0.4617 (298) 33,470 (148.9) 20,085	(25.4) 0.6057 (391) 43,910 (195.3) 26,345	(31.8) 0.9691 (625) 70,260 (312.5) 42,155
ASTM F1554 ASTM A193 B7 Gr. 55 Gr. 36 Gr. 55 Gr. 36 ASTM A193 B7 Class 5.8 Brass Stue Stue Stue Stue Stue Stue Stue Stue	pominal strength as governed by steel rength eduction for seismic shear rength reduction factor ϕ for tension ² rength reduction factor ϕ for shear ² pominal strength as governed by steel rength eduction for seismic shear rength reduction factor ϕ for tension ³	A _{se} N _{sa} V _{sa} ϕ N _{sa} V _{sa}	in. ² (mm ²) lb (kN) - - - lb (kN)	0.0775 (50) 5,620 (25.0) 3,370 (15.0)	0.1419 (92) 10,290 (45.8) 6,175	0.2260 (146) 16,385 (72.9) 9,830	0.3345 (216) 24,250 (107.9) 14,550 (64.7) 1.0	0.4617 (298) 33,470 (148.9) 20,085	0.6057 (391) 43,910 (195.3) 26,345	0.9691 (625) 70,260 (312.5) 42,155
ASTM F1554 ASTM F1554 ASTM A193 B7 ISO 898-1 Gr. 55 Gr. 36 ASTM A193 B7 Class 5.8 Ast A193 B7 Ast A193	pominal strength as governed by steel rength eduction for seismic shear rength reduction factor ϕ for tension ² rength reduction factor ϕ for shear ² pominal strength as governed by steel rength eduction for seismic shear rength reduction factor ϕ for tension ³	N _{sa} V _{sa} ϕ N _{sa} V _{sa}	(mm ²) Ib (kN) Ib (kN) - - Ib (kN)	(50) 5,620 (25.0) 3,370 (15.0)	(92) 10,290 (45.8) 6,175	(146) 16,385 (72.9) 9,830	(216) 24,250 (107.9) 14,550 (64.7) 1.0	(298) 33,470 (148.9) 20,085	(391) 43,910 (195.3) 26,345	(625) 70,260 (312.5) 42,155
ASTM F1554 ASTM F1554 ASTM A193 B7 ISO 898-1 Gr. 55 Gr. 36 Gr. 36 ASTM A193 B7 Class 5.8 Astm A193 B7 Lass 5.8 Astm A193 B7 Class 5.8 Astm A193 B7 Astm A193 B7 Astm A193 B7 Class 5.8 Astm A193 B7 Astm	pominal strength as governed by steel rength eduction for seismic shear rength reduction factor ϕ for tension ² rength reduction factor ϕ for shear ² pominal strength as governed by steel rength eduction for seismic shear rength reduction factor ϕ for tension ³	N _{sa} V _{sa} ϕ N _{sa} V _{sa}	Ib (kN) Ib (kN) - - Ib (kN)	5,620 (25.0) 3,370 (15.0)	10,290 (45.8) 6,175	16,385 (72.9) 9,830	24,250 (107.9) 14,550 (64.7) 1.0	33,470 (148.9) 20,085	43,910 (195.3) 26,345	70,260 (312.5) 42,155
ASTM F1554 ASTM F1554 ASTM A193 B7 ISO 898-1 Gr. 55 Gr. 36 Gr. 36 ASTM A193 B7 ISO 898-1 ASTM A193 B7 ASTM A1	rength eduction for seismic shear rength reduction factor ϕ for tension ² rength reduction factor ϕ for shear ² pominal strength as governed by steel rength eduction for seismic shear rength reduction factor ϕ for tension ³	V _{sa} $\alpha_{V,seis}$ ϕ ϕ N_{sa} V_{sa}	(kN) b (kN) - - - b (kN)	(25.0) 3,370 (15.0)	(45.8) 6,175	(72.9) 9,830	(107.9) 14,550 (64.7) 1.0	(148.9) 20,085	(195.3) 26,345	(312.5) 42,155
ASTM F1554 ASTM F1554 ASTM A193 B7 ISO 898-1 Gr. 55 Gr. 36 Gr. 36 ASTM A193 B7 ISO 898-1 ASTM A193 B7 ASTM A1	rength eduction for seismic shear rength reduction factor ϕ for tension ² rength reduction factor ϕ for shear ² pominal strength as governed by steel rength eduction for seismic shear rength reduction factor ϕ for tension ³	V _{sa} $\alpha_{V,seis}$ ϕ ϕ N_{sa} V_{sa}	lb (kN) - - - lb (kN)	3,370 (15.0)	6,175	9,830	14,550 (64.7) 1.0	20,085	26,345	42,155
ASTM F1554 ASTM F1554 ASTM A193 B7 Gr. 35 Gr. 36 Gr. 36 ASTM A193 B7 ASTM A193 B7 A	eduction for seismic shear rength reduction factor ϕ for tension ² rength reduction factor ϕ for shear ² cominal strength as governed by steel rength eduction for seismic shear rength reduction factor ϕ for tension ³	α _{V,seis} φ φ N _{sa} V _{sa}	(kN) - - - lb (kN)	(15.0)			(64.7) 1.0			
ASTM F1554 ASTM F1554 ASTM A193 B7 Gr. 35 Gr. 36 Gr. 36 ASTM A193 B7 ASTM A193 B7 A	rength reduction factor ϕ for tension ² trength reduction factor ϕ for shear ² ominal strength as governed by steel rength eduction for seismic shear trength reduction factor ϕ for tension ³	α _{V,seis} φ φ N _{sa} V _{sa}	- - - lb (kN)	`	(27.5)	(43.7)	1.0	(89.3)	(117.2)	(187.5)
ASTM F1554 ASTM F1554 ASTM A193 B7 Gr. 35 Gr. 36 Gr. 36 ASTM A193 B7 ASTM A193 B7 A	rength reduction factor ϕ for tension ² trength reduction factor ϕ for shear ² ominal strength as governed by steel rength eduction for seismic shear trength reduction factor ϕ for tension ³	φ φ N _{sa} V _{sa}	- - Ib (kN)	9,685	· · ·					
ASTM F1554 ASTM F1554 ASTM A193 B7 Gr. 35 Gr. 36 Gr. 36 ASTM A193 B7 ASTM A193 B7 A	rength reduction factor ϕ for tension ² trength reduction factor ϕ for shear ² ominal strength as governed by steel rength eduction for seismic shear trength reduction factor ϕ for tension ³	φ φ N _{sa} V _{sa}	- Ib (kN)	9,685						
ASTM F1554 ASTM F1554 ASTM A193 B7 Gr. 35 Gr. 36 ASTM F1554 ASTM A193 B7 ASTM A193 B7 Gr. 36 ASTM A193 B7 ASTM A193 B7 AST	ominal strength as governed by steel rength eduction for seismic shear rength reduction factor ϕ for tension ³	N _{sa} V _{sa}	(kN)	9,685			0.65			
ASTM F1554 ASTM F1554 ASTM A193 Gr. 35 Gr. 36 Gr. 36 ASTM A193 ASTM A1554 ASTM A193 Gr. 36 ASTM A193 ASTM A193	rength eduction for seismic shear rrength reduction factor ϕ for tension ³	Vsa	(kN)	9,685			0.60			
ASTM F1554 ASTM F1554 ASTM A193 Gr. 35 Gr. 36 Gr. 36 ASTM A193 ASTM A1554 ASTM A193 Gr. 36 ASTM A193 ASTM A193 ASTM A193 ASTM A193	rength eduction for seismic shear rrength reduction factor ϕ for tension ³	Vsa	()		17,735	28,250	41,810	57,710	75,710	121,135
ASTM F1554 ASTM F1554 ASTM A193 Gr. 35 Gr. 36 Gr. 36 ASTM A193 ASTM A1554 ASTM A193 Gr. 36 ASTM A193 ASTM A193	rength eduction for seismic shear rrength reduction factor ϕ for tension ³		()	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
ASTME F1554 ASTME F1554 Gr. 55 Gr. 36 ASTME F1554 ASTME F15554 ASTME F155544 ASTME F15554 ASTME F155544 ASTME F155564 ASTME F155564 ASTME F155564 ASTME F155564 ASTME F1555	eduction for seismic shear trength reduction factor ϕ for tension ³			5,810	10,640	16,950	25,085	34,625	45,425	72,680
ASTM F1554 ASTM F1554 Gr. 55 Gr. 36 ASTM F1554 ASTM F15554 ASTM F155544 ASTM F155544 ASTM F155544 ASTM F155544 ASTM F1555	rength reduction factor ϕ for tension ³	αv,seis	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
ASTM F1554 ASTM F1554 Gr. 55 Gr. 36 ASTM F1554 ASTM F15554 ASTM F155544 ASTM F155544 ASTM F155544 ASTM F155544 ASTM F1555	rength reduction factor ϕ for tension ³	0.0,3013	-	(20:0)	(11.0)	(1011)	1.0	(101.0)	(202.1)	(020:0)
ASTM F1554 ASTM F1554 Gr. 55 Gr. 36 ASTM F1554 ASTM F15554 ASTM F155544 ASTM F155544 ASTM F155544 ASTM F155544 ASTM F1555		ϕ	-				0.75			
ASTM F1554 Gr. 55 Bar State Stree St		ϕ	-				0.65			
ASTM F1554 Gr. 55 Bab Stre Stre Stre Stre Stre Stre Stre Stre		<u> </u>	lb	-	8.230	13,110	19,400	26,780	35,130	56,210
ASTM F1554 Gr. 55 Bab Stre Stre Stre Stre Stre Stre Stre Stre	ominal strength as governed by steel	Nsa	(kN)	_	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)	(250.0)
ASTM F1554 Gr. 55 Bab Stre Stre Stre Stre Stre Stre Stre Stre	rength		lb	-	4,940	7,865	11,640	16,070	21,080	33,725
AStree ASTREAS A		Vsa	(kN)	-	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)	(150.0)
AStree ASTREAS A	eduction factor, seismic shear	αv.seis	-		()	(****)	0.6	()	(00.0)	()
AStree AST AST AST AST AST AST AST AST AST AST	rength reduction factor ϕ for tension ³	φ	-				0.75			
ASTM F1554 Gr. 55 Bab Stre	rength reduction factor ϕ for shear ³	ϕ	-				0.65			-
ASTA F155 Gr. 55 Stre Stre			lb	-	10,645	16,950	25,090	34,630	45,430	72,685
ASTA F155 Gr. 55 Stre Stre	ominal strength as governed by steel	Nsa	(kN)	-	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
	strength		lb	-	6,385	10,170	15,055	20,780	27,260	43,610
	0	V _{sa}	(kN)	-	(28.4)	(45.2)	(67.0)	(92.4)	(121.3)	(194.0)
	eduction factor, seismic shear	α _{v,seis}	-				1.0		• •	• • •
	rength reduction factor ϕ for tension ³	φ	-				0.75			
	rength reduction factor ϕ for shear ³	φ	-				0.65			
	·····g································	,	lb	-	17.740	28.250	41.815	57,715	75,715	121.135
5 Nor	ominal strength as governed by steel	N _{sa}	(kN)	-	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
<u>ເດັ</u> ດ stre	rength		lb	-	10,645	16,950	25,090	34,630	45,430	72,680
т С	0	Vsa	(kN)	-	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
ASTM F1554 Gr. 105 Back Stree	eduction factor, seismic shear	αv,seis	-			,	1.0			<u> </u>
S Str€	rength reduction factor ϕ for tension ³	φ	-				0.75			
Stre	rength reduction factor ϕ for shear ³	φ	-				0.65			
>	X ,		lb	7,750	14,190	22,600	28,435	39,245	51,485	-
S Nor	ominal strength as governed by steel	Nsa	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	-
ຕ໌ 👸 stre	rength	V	lb	4,650	8,515	13,560	17,060	23,545	30,890	-
inle		V _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	-
M F593, Stainless Bainless	eduction factor, seismic shear	∕∕v,seis	-			0.	80			-
ASTM F593, CW Stainless State State State State	rength reduction factor ϕ for tension ²	φ	-			0.	65			-
✓ Street	rength reduction factor ϕ for shear ²	φ	-			0.	60			-
		N	lb				-			55,240
ບັ ⊷ Nor		Nsa	(kN)							(245.7)
က္က်ပ္လိုပ္လို stre	ominal strength as governed by steel	17	lb				-			33,145
N15 Ne	ominal strength as governed by steel rength	Vsa	(kN)							(147.4)
ASTM A193, G 8(M), Class 1 Stainless 2 auts 2 Stainless 2 exts 2 Stainless 2 S		α _{v,seis}	-				-			0.8
E Stre		av,sels								
<pre>Vi al al</pre>	rength	φ	-				-			0.75

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf

¹Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b), ACI 318-14 Eq. (17.4.1.2) and Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must be appropriate for the rod.

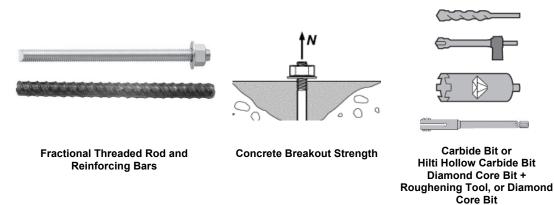
rod. ²For use with the load combinations of Section 1605.1 of the 2021 IBC or Section 1605.2 of the 2018, 2015, and 2012 IBC, ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-19 17.5.3 or ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *φ* must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a brittle steel element.

³For use with the load combinations of Section 1605.1 of the 2021 IBC or Section 1605.2 of the 2018, 2015, and 2012 IBC, ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-19 17.5.3 or ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a ductile steel element.

Fractional Reinforcing Bars

Steel Strength

TABLE 6B—STEEL DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS


DESI		Symbol	Units			Nomin	al Reinforci	ng bar size	(Rebar)					
DESI		Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10			
Nemin	al bar diameter	d	in.	³ /8	1/2	⁵ /8	3/4	7/ ₈	1	1 ¹ / ₈	1 ¹ / ₄			
Nomin	lai bar diameter	d	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)			
Barof	fective cross-sectional area	Ase	in. ²	0.11	0.2	0.31	0.44	0.6	0.79	1.0	1.27			
		Ase	(mm ²)	(71)	(129)	(200)	(284)	(387)	(510)	(645)	(819)			
		N _{sa}	lb	6,600	12,000	18,600	26,400	36,000	47,400	60,000	76,200			
2	Nominal strength as governed by steel	INsa	(kN)	(29.4)	(53.4)	(82.7)	(117.4)	(160.1)	(210.9)	(266.9)	(339.0)			
461 40	strength	Vsa	lb	3,960	7,200	11,160	15,840	21,600	28,440	36,000	45,720			
M ∕		V sa	(kN)	(17.6)	(32.0)	(49.6)	(70.5)	(96.1)	(126.5)	(160.1)	(203.4)			
STM A615 Grade 40	Reduction for seismic shear	∕∕V,seis	-		0.70									
∢ _	Strength reduction factor ϕ for tension ²	φ	-	0.65										
	Strength reduction factor ϕ for shear ²	ϕ	-				0.	60						
	lominal strength as governed by steel	N _{sa}	lb	8,800	16,000	24,800	35,200	48,000	63,200	80,000	101,600			
2		INsa	(kN)	(39.1)	(71.2)	(110.3)	(156.6)	(213.5)	(281.1)	(355.9)	(451.9)			
461 60	Nominal strength as governed by steel strength Strength Reduction for seismic shear		lb	5,280	9,600	14,880	21,120	28,800	37,920	48,000	60,960			
M /		V _{sa}	(kN)	(23.5)	(42.7)	(66.2)	(93.9)	(128.1)	(168.7)	(213.5)	(271.2)			
Gra	Reduction for seismic shear	∕∕V,seis	-				0.	70						
∢ _	Strength reduction factor ϕ for tension ²	ϕ	-				0.	65						
	Strength reduction factor ϕ for shear ²	ϕ	-				0.	60						
		N _{sa}	lb	8,800	16,000	24,800	35,200	48,000	63,200	80,000	101,600			
9	Nominal strength as governed by steel	INsa	(kN)	(39.1)	(71.2)	(110.3)	(156.6)	(213.5)	(281.1)	(355.9)	(452.0)			
47C 60	strength	Vsa	lb	5,280	9,600	14,880	21,120	28,800	37,920	48,000	60,960			
M ∕		V sa	(kN)	(23.5)	(42.7)	(66.2)	(94.0)	(128.1)	(168.7)	(213.5)	(271.2)			
ASTM A706 Grade 60	Reduction for seismic shear	∕∕V,seis		0.70										
٩°	Strength reduction factor ϕ for tension ³	φ					0.	75						
	Strength reduction factor ϕ for shear ³	φ					0.	65						

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf

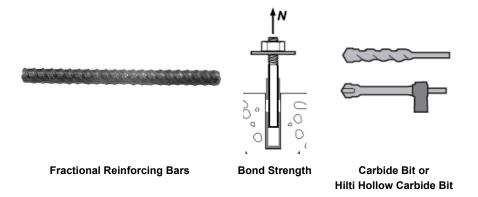
¹ Values provided for common rebar types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b), ACI 318-14 Eq. (17.4.1.2) and Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers must be appropriate for the rod. ² For use with the load combinations of Section 1605.1 of the 2021 IBC or Section 1605.2 of the 2018, 2015, and 2012 IBC, ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as set forth in ACI 318-19 17.5.3 or ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the

appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a brittle steel element.

³ For use with the load combinations of Section 1605.1 of the 2021 IBC or Section 1605.2 of the 2018, 2015, and 2012 IBC, ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as set forth in ACI 318-19 17.5.3 or ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a ductile steel element.

TABLE 7—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REINFORCING BARS ALL DRILLING METHODS¹

DESIGN						Nomina	rod dia	meter (i	n.) / Reir	nforcing	bar size)		
INFORMATION	Symbol	Units	³ / ₈ or #3	¹ / ₂	#4	⁵ /8	#5	³ / ₄	#6	7/ ₈	#7	1 or #8	#9	1 ¹ / ₄ or #10
Effectiveness factor for	k _{c.cr}	in-lb						-	7					
cracked concrete	NC,Cr	(SI)						,	.1)					
Effectiveness factor for	k	in-lb						2	4					
uncracked concrete	K c,uncr	(SI)						(1	0)					
Minimum Embedment	h _{ef.min}	in.	2 ³ / ₈	2 ³ / ₄	2 ³ / ₈	3 ¹ / ₈	3	3 ¹ / ₂	3	3 ¹ / ₂	3 ³ / ₈	4	4 ¹ / ₂	5
		(mm)	(60)	(70)	(60)	(79)	(76)	(89)	(76)	(89)	(85)	(102)	(114)	(127)
Maximum Embedment	h	in.	7 ¹ / ₂	10	10	12 ¹ / ₂	12 ¹ / ₂	15	15	17 ¹ / ₂	17 ¹ / ₂	20	22 ¹ / ₂	25
Maximum Empedment	h _{ef,max}	(mm)	(191)	(254)	(254)	(318)	(318)	(381)	(381)	(445)	(445)	(508)	(572)	(635)
Min and an an a in a3	_	in.	1 ⁷ / ₈	2 ¹ / ₂	2 ¹ / ₂	3 ¹ / ₈	3 ¹ / ₈	33/4	33/4	4 ³ / ₈	4 ³ / ₈	5	5 ⁵ /8	6 ¹ / ₄
Min. anchor spacing ³	Smin	(mm)	(48)	(64)	(64)	(79)	(79)	(95)	(95)	(111)	(111)	(127)	(143)	(159)
Min. edge distance ³	Cmin	-	5	d; or se	e Sectior	n 4.1.9 of	this rep	ort for de	esign with	n reduce	d minimu	m edge	distance	S
Minimum concrete	6	in.		$h_{ef} + 1^{1}/$	4					hef + 2do	(4)			
thickness	h _{min}	(mm)		(<i>h</i> _{ef} + 30))					n _{ef} + 200	.,			
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-		(<i>n</i> _{ef} + 30) See Section 4.1.10 of this report.										
Strength reduction factor for tension, concrete failure modes ²	φ	-						0.	65					
Strength reduction factor for shear, concrete failure modes ²	φ	-						0.	70					


For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

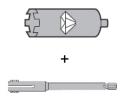
¹Additional setting information is described in Figure 8A and 8B, Manufacturers Printed Installation Instructions (MPII). ²The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

 ${}^{4}d_{0}$ = hole diameter.

TABLE 8—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

		DMATION	Quarter	11			No	minal reinfo	orcing bar	size		
DESIG	NINFC	ORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
	linimum Embedment			in.	2 ³ /8	2 ³ /8	3	3	3 ³ /8	4	41/2	5
winimu	im Emp	beament	h _{ef,min}	(mm)	(60)	(60)	(76)	(76)	(85)	(102)	(114)	(127)
Maxim	Maximum Embedment		h	in.	71⁄2	10	12½	15	17½	20	221/2	25
Maxim			h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
pe	tracked concrete		_	psi	1,350	1,360	1,390	1,410	1,410	1,420	1,390	1,340
urate	e A	cracked concrete	Tk,cr	(MPa)	(9.3)	(9.4)	(9.6)	(9.7)	(9.7)	(9.8)	(9.6)	(9.3)
Satı	mpe	Characteristic bond strength in	_	psi	1,770	1,740	1,720	1,690	1,670	1,640	1,620	1,590
e ter	Te	uncracked concrete	T _{k,uncr}	(MPa)	(12.2)	(12.0)	(11.9)	(11.7)	(11.5)	(11.3)	(11.2)	(11.0)
Wa	e re	Characteristic bond strength in	_	psi	930	940	960	970	980	980	960	930
and Wat Concrete	eratu e B²	cracked concrete	T _{k,cr}	(MPa)	(6.4)	(6.5)	(6.6)	(6.7)	(6.7)	(6.8)	(6.6)	(6.4)
ete	Characteristic bond strength in cracked concrete be cracked concrete characteristic bond strength in uncracked concrete characteristic bond strength in uncracked concrete characteristic bond strength in uncracked concrete characteristic bond strength in uncracked concrete		_	psi	1,220	1,200	1,190	1,170	1,150	1,130	1,120	1,100
		Tk,uncr	(MPa)	(8.4)	(8.3)	(8.2)	(8.1)	(7.9)	(7.8)	(7.7)	(7.6)	
o Z	Anchor Category		-	-	1	1	1	1	1	1	1	1
ā	Strength Reduction lactor		$\phi_{d,} \phi_{ws}$	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	ure 2	Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete		psi	1,000	1,010	1,040	1,060	1,070	1,090	1,070	1,050
e	e A	te e cracked concrete	Tk,cr	(MPa)	(6.9)	(6.9)	(7.2)	(7.3)	(7.4)	(7.5)	(7.4)	(7.2)
	mpera ange <i>i</i>	Characteristic bond strength in	_	psi	1,300	1,290	1,290	1,280	1,270	1,260	1,240	1,240
hole	ЧЦ Ч	uncracked concrete	Tk,uncr	(MPa)	(9.0)	(8.9)	(8.9)	(8.8)	(8.7)	(8.7)	(8.6)	(8.6)
Water-filled hole	a re	Characteristic bond strength in	_	psi	690	700	720	730	740	750	740	720
er-fi	emperature range B²	cracked concrete	Tk,cr	(MPa)	(4.7)	(4.8)	(5.0)	(5.0)	(5.1)	(5.2)	(5.1)	(5.0)
Vate	mpera	Characteristic bond strength in	_	psi	900	890	890	880	870	870	860	860
_	Te L	uncracked concrete	𝒯k,uncr	(MPa)	(6.2)	(6.1)	(6.1)	(6.1)	(6.0)	(6.0)	(5.9)	(5.9)
	Ancho	r Category	-	-	3	3	3	3	3	3	3	3
	Streng	th Reduction factor	Øwt	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	ure 2	Characteristic bond strength in	-	psi	860	890	920	940	960	990	970	980
	Temperature range A ²	cracked concrete	Tk,cr	(MPa)	(5.9)	(6.1)	(6.3)	(6.5)	(6.6)	(6.9)	(6.7)	(6.8)
ete	mpera	Characteristic bond strength in	_	psi	1,140	1,130	1,140	1,140	1,140	1,150	1,130	1,150
ncr	Ч Т е г	uncracked concrete	Tk,uncr	(MPa)	(7.9)	(7.8)	(7.9)	(7.9)	(7.9)	(7.9)	(7.8)	(8.0)
d CC	are 2	Characteristic bond strength in	_	psi	590	610	630	650	660	690	670	680
eGe	eratu e B²	cracked concrete	Tk,cr	(MPa)	(4.1)	(4.2)	(4.4)	(4.5)	(4.6)	(4.7)	(4.6)	(4.7)
Submerged concrete	emperature range B ²	Characteristic bond strength in	_	psi	790	780	790	790	790	790	790	800
Sul	Te	uncracked concrete	Tk,uncr	(MPa)	(5.4)	(5.4)	(5.4)	(5.4)	(5.4)	(5.5)	(5.4)	(5.5)
	Ancho	r Category	-	-	3	3	3	3	3	3	3	3
	Streng	th Reduction factor	φυω	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Reduct	ion for	seismic tension	αN,seis	-	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9


For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f'_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'_c, between 2,500 psi (17.2 Boild strength values correspond to concrete compressive strength $r_c = 2,500$ ps (17.2 MPa). For concrete (5.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ($f_c/2,500$)^{0.25} for uncracked concrete [For SI: ($f_c/17.2$)^{0.15}]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are

roughly constant over significant periods of time.

Diamond Core Bit +

Fractional Reinforcing Bars

Roughening Tool TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

		O week al	Unite			Nominal reinforcing bar size			
NFORMATION		Symbol	Units	#5	#6	#7	#8	#9	
Embedment		h _{ef,min}	in. (mm)	3 (76)	3 (76)	3 ³ / ₈ (85)	4 (102)	4½ (115)	
imum Embedment		h _{ef,max}	in. (mm)	12½ (318)	11 ¼ (286)	17½ (445)	20 (508)	22½ (573)	
Temperature range A ² Characteristic bond strength in cracked concrete		T _{k,cr}	psi (MPa)	970 (6.7)	990 (6.8)	990 (6.8)	995 (6.9)	970 (6.7)	
range A ² Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (MPa)	1,720 (11.9)	1,690 (11.7)	1,670 (11.5)	1,640 (11.3)	1,620 (11.2)		
Temperature range B ² Characteristic bond strength in uncracked concrete Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete		T _{k,cr}	psi (MPa)	670 (4.6)	680 (4.7)	680 (4.7)	690 (4.8)	670 (4.6)	
		T _{k,uncr}	psi (MPa)	1,190 (8.2)	1,170 (8.1)	1,150 (7.9)	1,130 (7.8)	1,120 (7.7)	
Anchor Categor	у	-	-	1	1	1	1	1	
Anchor Category Strength Reduction factor		φ _d , φ _{ws}	-	0.65	0.65	0.65	0.65	0.65 0.9	
	Embedment Temperature range A ² Temperature range B ² Anchor Categor Strength Reduc	Embedment Embedment Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete Temperature range B ² Characteristic bond strength in cracked concrete Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete Anchor Category	Embedment $h_{et,min}$ Embedment $h_{et,max}$ Temperature range A ² Characteristic bond strength in cracked concrete $\tau_{k,cr}$ Temperature range B ² Characteristic bond strength in uncracked concrete $\tau_{k,uncr}$ Temperature range B ² Characteristic bond strength in cracked concrete $\tau_{k,uncr}$ Aracteristic bond strength in uncracked concrete $\tau_{k,uncr}$ $\tau_{k,uncr}$ Anchor Category - Strength Reduction factor ϕ_{d}, ϕ_{ws}	Embedment $h_{ef,min}$ in. (mm) Embedment $h_{ef,max}$ in. (mm) Temperature range A ² Characteristic bond strength in cracked concrete $\tau_{k,cr}$ psi (MPa) Temperature range B ² Characteristic bond strength in uncracked concrete $\tau_{k,uncr}$ psi (MPa) Temperature range B ² Characteristic bond strength in cracked concrete $\tau_{k,uncr}$ psi (MPa) Temperature range B ² Characteristic bond strength in cracked concrete $\tau_{k,uncr}$ psi (MPa) Anchor Category - - - Strength Reduction factor ϕ_d, ϕ_{ws} -	#5Embedment $h_{ef,min}$ in.3 (mm)3 (76)Embedment $h_{ef,min}$ in.12½ (mm)12½ (mm)Temperature range A2Characteristic bond strength in cracked concrete $\pi_{k,cr}$ psi970 (MPa)Temperature range B2Characteristic bond strength in cracked concrete $\pi_{k,cr}$ psi1,720 (MPa)Temperature range B2Characteristic bond strength in cracked concrete $\pi_{k,cr}$ psi670 (MPa)Temperature range B2Characteristic bond strength in cracked concrete $\pi_{k,cr}$ psi670 (MPa)Anchor Category1Strength Reduction factor ϕ_{d}, ϕ_{ws} -0.65	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol Units #5 #6 #7 Embedment $h_{et,min}$ in. (mm) 3 3 3 ³ / ₈ Embedment $h_{et,min}$ in. (mm) 3 3 3 ³ / ₈ Embedment $h_{et,max}$ in. (mm) 12 ¹ / ₂ 11 ¹ / ₄ 17 ¹ / ₂ Embedment $h_{et,max}$ in. (mm) 12 ¹ / ₂ 11 ¹ / ₄ 17 ¹ / ₂ Temperature range A ² Characteristic bond strength in cracked concrete $\tau_{k,cr}$ psi 970 990 990 Characteristic bond strength in uncracked concrete $\tau_{k,cr}$ psi 1,720 1,690 1,670 Temperature range B ² Characteristic bond strength in cracked concrete $\tau_{k,uner}$ psi 670 680 680 Mchor Category Characteristic bond strength in uncracked concrete $\tau_{k,uner}$ psi 1,190 1,170 1,150 Anchor Category - - 1 1 1 1 Strength Reduction factor ϕ_{d}, ϕ_{ws} - 0.65	Symbol Units #5 #6 #7 #8 Embedment $h_{et,min}$ in. (mm) 3 3 3 ³ / ₆ 4 Embedment $h_{et,min}$ in. (mm) 3 3 3 ³ / ₆ 4 Embedment $h_{et,min}$ in. (mm) 12½ 11 ¼ 17½ 20 Embedment $h_{et,max}$ psi 970 990 990 995 In cracked concrete $T_{k,cr}$ psi 1,720 1,690 1,670 1,640 In uncracked concrete $T_{k,cr}$ psi 670 680 680 690 In cracked concrete $T_{k,cr}$ psi 1,190 1,170 1,150 1,130	

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi \leq f'c \leq 8,000 psi). ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

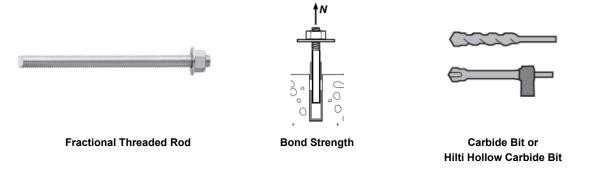
Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Reinforcing Bars

Bond Strength

Diamond Core Bit



	ESIGN INFORMATION						Nomi	nal reinfo	orcing ba	r size		
DESIG	SNINFORMATION		Symbol	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		#10						
Minim	um Embedment		h	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5						
winnin	um Embedment		l'lef,min	(mm)	(60)	(60)	(76)	(76)	(85)	(102)	(114)	(127)
Maxim	um Embedment		h	in.	71⁄2	10	121⁄2	15	17½	20	221/2	25
waxim		l lef,max	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)	
er rete	Temperature range	Characteristic bond strength in	-	psi	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150
water	A ²	uncracked concrete	1k,uncr	(MPa)	(8.0)	(8.0)	(8.0)	(8.0)	(8.0)	(8.0)	(8.0)	(8.0)
27	Temperature range	Characteristic bond strength in		psi	800	800	800	800	800	800	800	800
	B ²	uncracked concrete	T _{k,uncr}	(MPa)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)
Dry atura	Anchor Category	or Category	-	-	2	2	3	3	3	3	3	3
٥	Strength Reduction	factor	Ød, Øws	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45

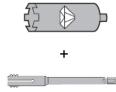
For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi ¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.25}$ for uncracked concrete. [For SI: $(f_c / 17.2)^{0.25}$]. See Section 4.1.4 of this report for bond strength determination.

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 11—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

	DES		Symbol	Units		-	Nomin	al rod diar	neter (in.)	•	
	DLC		Cymbol	Onits	3/8	1/ ₂	⁵ /8	³ / ₄	7/8	1	1 ¹ / ₄
			1-	in.	2 ³ /8	2 ³ / ₄	3 ¹ /8	3 ¹ / ₂	3 ¹ / ₂	4	5
Minimur	n Embed	ment	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
	- ·		4	in.	71⁄2	10	12½	15	17½	20	25
Maximu	m Embeo	lment	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)
	Le	Characteristic bond strength in		psi	1,280	1,270	1,260	1,250	1,240	1,240	1,180
	Temperature range A ²	cracked concrete	$ au_{\kappa,cr}$	(MPa)	(8.8)	(8.7)	(8.7)	(8.6)	(8.6)	(8.5)	(8.1)
ater te	mpe ang	Characteristic bond strength in		psi	2,380	2,300	2,210	2,130	2,040	1,960	1,790
d W	Te	uncracked concrete	$\tau_{\kappa,uncr}$	(MPa)	(16.4)	(15.8)	(15.3)	(14.7)	(14.1)	(13.5)	(12.4)
Dry concrete and Water Saturated Concrete	e	Characteristic bond strength in	_	psi	880	870	870	860	860	850	810
crete	Temperature range B²	cracked concrete	$ au_{\kappa,cr}$	(MPa)	(6.1)	(6.0)	(6.0)	(5.9)	(5.9)	(5.9)	(5.6)
con	mpe	Characteristic bond strength in		psi	1,640	1,590	1,530	1,470	1,410	1,350	1,240
S. Si	Te	uncracked concrete	$\tau_{\kappa,uncr}$	(MPa)	(11.3)	(10.9)	(10.5)	(10.1)	(9.7)	(9.3)	(8.5)
_	Anchor	Category	-	-	1	1	1	1	1	1	1
	Strength	Reduction factor	φd, φws	φδ, φωσ	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	e	Characteristic bond strength in		psi	940	940	940	940	940	950	920
	e A²	cracked concrete	Τĸ,cr	(MPa)	(6.5)	(6.5)	(6.5)	(6.5)	(6.5)	4 (102) 20 (508) 1,240 (8.5) 1,960 (13.5) 850 (5.9) 1,350 (9.3) 1 0.65	(6.4)
	Temperature range A ²	Characteristic bond strength in		psi	1,760	1,700	1,660	1,600	1,550	1,500	1,400
Water-filled hole	Te	uncracked concrete	$\tau_{\kappa,uncr}$	(MPa)	(12.1)	(11.7)	(11.4)	(11.0)	(10.7)	(10.4)	(9.7)
led	e	Characteristic bond strength in		psi	650	650	650	650	650	650	640
er-fil	Temperature range B²	cracked concrete	$ au_{\kappa,cr}$	(MPa)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.4)
Wate	empera range l	Characteristic bond strength in		psi	1,210	1,170	1,140	1,110	1,070	1,040	970
_	Te	uncracked concrete	$\tau_{\kappa,uncr}$	(MPa)	(8.4)	(8.1)	(7.9)	(7.6)	(7.4)	(7.1)	(6.7)
	Anchor	Category	-	-	3	3	3	3	3	3	3
	Strength	Reduction factor	фwf	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	Ire	Characteristic bond strength in	_	psi	820	830	830	840	850	860	860
	e A₂	cracked concrete	$ au_{\kappa,cr}$	(MPa)	(5.7)	(5.7)	(5.8)	(5.8)	(5.9)	(5.9)	(5.9)
ete	Temperature range A ²	Characteristic bond strength in	_	psi	1,530	1,500	1,470	1,430	1,400	1,370	1,300
ncre	Te	uncracked concrete	$\tau_{\kappa,uncr}$	(MPa)	(10.6)	(10.3)	(10.1)	(9.9)	(9.6)	(9.4)	(9.0)
o p	e	Characteristic bond strength in	_	psi	570	570	580	580	590	590	590
erge	e B≟	cracked concrete	$ au_{\kappa,cr}$	(MPa)	(3.9)	(3.9)	(4.0)	(4.0)	(4.0)	(4.1)	(4.1)
Submerged concrete	Temperature range B²	Characteristic bond strength in		psi	1,060	1,030	1,010	990	960	940	900
Su	Te	uncracked concrete	$T_{\kappa,uncr}$	(MPa)	(7.3)	(7.1)	(7.0)	(6.8)	(6.6)	(6.5)	(6.2)
	Anchor	Category	-	-	3	3	3	3	3	3	3
	Strength	Reduction factor	фиw	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Reductio	on for sei	smic tension	QN,seis	-	0.92	0.93	0.95	1	1	1	1


For **SI**: 1 inch $\equiv 25.4$ mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi ¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c / 17.2)^{0.25}$] and $(f_c / 2,500)^{0.15}$ for cracked concrete [For SI: $(f_c / 17.2)^{0.15}$]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C). Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Threaded Rod

Bond Strength

Diamond Core Bit + Roughening Tool

TABLE 12—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DEOLO				11.216		Nomina	I rod diamet	er (in.)	
DESIG	IN INFORMATION	4	Symbol	Units	⁵ /8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
Minim	um Embedment		h _{ef.min}	in.	3 ¹ / ₈	31/2	31⁄2	4	5
IVIII III II			T let, min	(mm)	(79)	(89)	(89)	(102)	(127)
Maxim	um Embedment		h	in.	121⁄2	11¼	17½	20	25
waxim	um Embedment		h _{ef,max}	(mm)	(318)	(286)	(445)	0 870 825 0) (6.0) (5.7)	
ete		Characteristic bond strength in		psi	880	875	870	870	825
concrete	Temperature	cracked concrete	Tk, cr	(MPa)	(6.1)	(6.0)	(6.0)	(6.0)	(5.7)
	range A ²	Characteristic bond strength in		psi	2,210	2,130	2,040	1,960	1,790
ated		uncracked concrete	Tk,uncr	(MPa)	(15.3)	(14.7)	(14.1)	(13.5)	(12.4)
atura		Characteristic bond strength in		psi	610	605	605	600	570
er se	Temperature	cracked concrete	Tk, cr	(MPa)	(4.2)	(4.2)	(4.2)	(4.1)	(3.9)
Temperature range B ² Characteristic be cracked concret Characteristic be cracked concret Characteristic be cracked concret	Characteristic bond strength in		psi	1,530	1,470	1,410	1,350	1,240	
		uncracked concrete	Tk,uncr	(MPa)	(10.5)	(10.1)	(9.7)	(9.3)	(8.5)
Уa	Anchor Category		-	-	1	1	1	1	1
Dry	Strength Reducti	on factor	φd, φws	-	0.65	0.65	0.65	0.65	0.65
Reduc	tion for seismic ter	nsion	(X.N, seis	-	0.95	1	1	1	1

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi \leq f'c \leq 8,000 psi.

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = $176^{\circ}F(80^{\circ}C)$, Maximum long term temperature = $110^{\circ}F(43^{\circ}C)$. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete

temperatures are roughly constant over significant periods of time.

Fractional Threaded Rod

Bond Strength

Diamond Core Bit

TABLE 13—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT¹

DESIGN		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		al rod diame	rod diameter (in.)						
DESIGN			Symbol	Units	³ /8	1/2	⁵ /8	3/4	7/ ₈	1	1 1⁄4
Minimun	n Embedment		h	in.	2 ³ /8	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	5
winnin	Ellipedillelli		l lef,min	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
Movimu	n Embedment		b.	in.	71⁄2	10	121⁄2	15	17½	20	25
waximu		_	l lef,max	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)
	Temperature	Characteristic bond		psi	1,550	1,550	1,550	1,550	1,550	1,550	1,550
icrete and saturated	range A ²	strength in uncracked concrete	Tk,uncr	(MPa)	(10.7)	(10.7)	(10.7)	(10.7)	(10.7)	(10.7)	(10.7)
srete atur srete	Temperature	Characteristic bond		psi	1,070	1,070	1,070	1,070	1,070	1,070	1,070
Dry concrete Water satura concrete	range B ²	strength in uncracked concrete	Tk,uncr	(MPa)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)
Dry Wa	Anchor Category	1	-	-	2	2	3	3	3	3	3
	Strength Reduct	ion factor	$\phi_{d,} \phi_{ws}$	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)^{0.25} for uncracked concrete [For SI: (f'c / 17.2)^{0.25}]. See Section 4.1.4 of this report for bond strength determination.

^{17.2} See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Metric Threaded Rod and EU Metric **Reinforcing Bars**

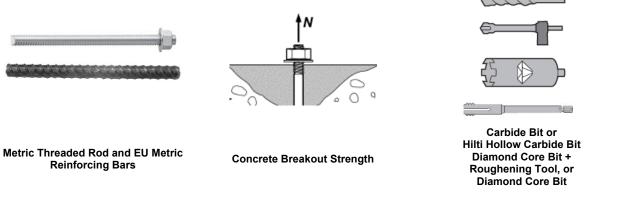

Steel Strength

TABLE 14—STEEL DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS

DESIG		Symbol	Units				Nomina	I rod diame	ter (mm) ¹			
DESIG		Symbol	onits	8	10	12	1		20	24	27	30
Rod O	utside Diameter	d	mm (in.)	8 (0.31)	10 (0.39)	12 (0.47) (0.6		20).79)	24 (0.94)	27 (1.06)	30 (1.18)
Dod of	factive group acctional are -	4	(III.) mm ²	36.6	58.0	84.3	<i>.</i>		245	353	459	561
Roa ei	fective cross-sectional area	Ase	(in. ²)	(0.057)	(0.090)	(0.13 ⁻	1) (0.2	43) (0	.380)	(0.547)	(0.711)	(0.870)
		N _{sa}	kN	18.3	29.0	42.0	78	.5 1	22.5	176.5	229.5	280.5
	Nominal strength as governed		(lb)	(4,114)	(6,519)	(9,476	6) (17,6	647) (27	7,539)	(39,679)	(51,594)	(63,059)
Υœ	by steel strength	Vsa	kN	11.0	14.5	25.5	47	.0 7	3.5	106.0	137.5	168.5
898 Ss 5		v sa	(lb)	(2,648)	(3,260)	(5,68	5) (10,5	588) (16	6,523)	(23,807)	(30,956)	(37,835)
ISO 898-1 Class 5.8	Reduction for seismic shear	$\alpha_{V,seis}$	-					1.00				
	Strength reduction factor for tension ²	φ	-					0.65				
	Strength reduction factor for	φ	_					0.60				
	shear ²	ψ	-		(0.5	07.5				000 5	007.0	
		N _{sa}	kN	29.3	46.5	67.5			96.0	282.5	(0.711) 229.5 (51,594) 137.5 (30,956) 367.0 (82,550) 220.5 (49,530) 220.5 (51,594) 137.7 (30,956) 30.0) (1.224) 706.9) (1.096)	449.0
	Nominal strength as governed		(lb)	(6,582)	(10,431				4,063)	(63,486)		(100,894)
	by steel strength	Vsa	kN	17.6	23.0	40.5			17.5	169.5		269.5
ISO 898-1 Class 8.8			(lb)	(3,949)	(5,216)	(9,097	7) (16,9	, ,	5,438)	(38,092)	(49,530)	(60,537)
Cla Cla	Reduction for seismic shear	$\alpha_{V,seis}$	-					1.00				
	Strength reduction factor for tension ²	ϕ	-					0.65				
	Strength reduction factor for shear ²	φ	-					0.60				
			kN	25.6	40.6	59.0	109	9.9 1	71.5	247.1	229.5	280.5
	Nominal strength as governed	N _{sa}	(lb)	(5,760)	(9,127)	(13,26	6) (24,7	706) (38	8,555)	(55,550)	(51,594)	(63,059)
lass s³	by steel strength		kN	15.4	20.3	35.4	65	.9 1	02.9	148.3	137.7	168.3
-1 C nles		Vsa	(lb)	(3,456)	(4,564)	(7,960	0) (14,8	324) (23	3,133)	(33,330)	(30,956)	(37,835)
SO 3506-1 Class A4 Stainless ³	Reduction for seismic shear	αv,seis	-		•			0.80				
N SO	Strength reduction factor for tension ²	φ	-					0.65				
	Strength reduction factor for	φ	_					0.60				
	shear ²	Ψ	_						d:			
DESIG	IN INFORMATION	Symbol	Units	10	12	14	16	forcing bar	25	28	30	32
Namin	al har diamatar	d	mm	10.0	12.0	14.0	16.0	20.0	25.0	28.0		32.0
	al bar diameter	u	(in.)	(0.394)	(0.472)	(0.551)	(0.630)	(0.787)	(0.984)	(1.102)	(1.224)	(1.260)
Bar off	ective cross-sectional area	Ase	mm ²	78.5	113.1	153.9	201.1	314.2	490.9	615.8	706.9	804.2
		Ase	(in.²)	(0.122)	(0.175)	(0.239)	(0.312)	(0.487)	(0.761)	(0.954)	(1.096)	(1.247)
		N	kN	43.0	62.0	84.5	110.5	173.0	270.0	338.5	388.8	442.5
000	Nominal strength as governed	N _{sa}	(lb)	(9,711)	(13,984)	(19,034)	(24,860)	(38,844)	(60,694)	(76,135) (87,406)	(99,441)
50/£	by steel strength		kN	26.0	37.5	51.0	66.5	103.0	162.0	203.0	233.3	265.5
St 5		Vsa	(lb)	(5,827)	(8,390)	(11,420)	(14,916)	(23,307)	(36,416)	(45,681) (52,444)	(59,665)
88 B	Reduction for seismic shear	∕∕V,seis	-					0.70			·	
DIN 488 BSt 550/50	Strength reduction factor for	φ	-					0.65				
ā	tension ² Strength reduction factor for	φ	-					0.60				
·	shear ²		l									

¹Values provided for common rod and rebar material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b), ACI 318-14 Eq (17.4.1.2) or Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-2), as applicable. Nuts and washers must be appropriate for the rod.
 ² For use with the load combinations of Section 1605.1 of the 2021 IBC or Section 1605.2 of the 2018, 2015, and 2012 IBC, ACI 318 (-19 or -14) 5.3, or ACI 318-11 9.2, as applicable, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318 1.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are

used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a brittle steel element. ³ A4-70 Stainless (M8- M24); A4-502 Stainless (M27- M30)

TABLE 15—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS ALL DRILLING METHODS¹

	Ourseland.	Unite				Nominal r	od diame	ter (mm)			
DESIGN INFORMATION	Symbol	Units	8	10	12	16	20)	24	27	30
	,	mm	60	60	70	80	90) .	100	110	120
Minimum Embedment	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.	5) (3.9)	(4.3)	(4.7)
Maximum Finale administ	la la	mm	160	200	240	320	40	0 4	480	540	600
Maximum Embedment	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)) (15.	.7) (1	8.9)	(21.4)	(23.7)
Min. on ohor on oping ³		mm	40	50	60	80	10	0	120	135	150
Min. anchor spacing ³	S _{min}	(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9	9) (4.7)	(5.3)	(5.9)
Min. edge distance ³	Cmin	-	5d; or se	e Section	4.1.9 of th	is report fo	or design v	vith reduc	ed minim	um edge di	stances
		mm	h _{ef} +	30					0		
Minimum concrete thickness	h _{min}	(in.)	(h _{ef} +	1 ¹ / ₄)				h _{ef} + 2d _o (*	9		
	Quark at	11			Nomir	nal reinfor	cing bar	diameter	(mm)		
DESIGN INFORMATION	Symbol	Units	10	12	14	16	20	25	28	30	32
Minimum Each admand	1-	mm	60	70	80	80	90	100	112	120	128
Minimum Embedment	h _{ef,min}	(in.)	(2.4)	(2.8)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)	(4.7)	(5.0)
Maximum Embedment	h	mm	200	240	280	320	400	500	560	600	640
Maximum Empedment	h _{ef,max}	(in.)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(23.7)	(25.2)
Min. anchor spacing ³	S _{min}	mm	50	60	70	80	100	125	140	150	160
	Smin	(in.)	(2.0)	(2.4)	(2.8)	(3.2)	(3.9)	(4.9)	(5.5)	(5.9)	(6.3)
Min. edge distance ³	Cmin	-	5d; or se	e Section	4.1.9 of th	is report fo	or design v	with reduc	ed minin	ium edge di	stances
		mm	h _{ef} + 30					a (1)			
Minimum concrete thickness	h _{min}	(in.)	(h _{ef} + 1 ¹ / ₄)				h _{ef} -	+ 2 <i>d</i> o ⁽⁴⁾			
Critical edge distance – splitting (for uncracked concrete)	Cac	-			S	ee Section	4.1.10 of	this repor	t.		
Effectiveness factor for	,	SI					7.1				
cracked concrete	K _{c,cr}	(in-lb)					(17)				
Effectiveness factor for		SI					10				
uncracked concrete	K _{c,uncr}	(in-lb)					(24)				
Strength reduction factor for tension, concrete failure modes ²	φ	-					0.65				
Strength reduction factor for shear, concrete failure modes ²	φ	-					0.70				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 8A and 8B, Manufacturers Printed Installation Instructions (MPII). ² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

⁴ d_0 = hole diameter.

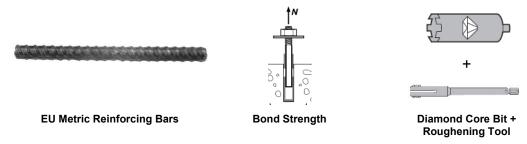
EU Metric Reinforcing Bars

Bond Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 16—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

							Non	ninal reinfo	orcing bar	diameter (mm)		-
DESIG	IN INFORMATIO	N	Symbol	Units	10	12	14	16	20	25	28	30	32
Minimu			4	mm	60	70	80	80	90	100	112	120	128
winimu	um Embedment		h _{ef,min}	(in.)	(2.4)	(2.8)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)	(4.7)	(5.0)
Maxim	um Embedment		h	mm	200	240	280	320	400	500	560	600	640
waxim			h _{ef,max}	(in.)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(23.7)	(25.2)
		Characteristic bond	_	MPa	9.3	9.4	9.5	9.6	9.7	9.8	9.7	9.5	9.3
¢)	Temperature	strength in cracked concrete	Tk,cr	(psi)	(1,350)	(1,360)	(1,380)	(1,390)	(1,410)	(1,420)	(1,400)	(1,370)	(1,350)
Dry concrete and Water saturated concrete	range A ²	Characteristic bond	_	MPa	12.2	12.1	12.0	11.8	11.6	11.4	11.2	11.1	11.0
con		strength in uncracked concrete	Tk, uncr	(psi)	(1,770)	(1,750)	(1,730)	(1,720)	(1,690)	(1,650)	(1,620)	(1,610)	(1,590)
Dry concrete and er saturated conci		Characteristic bond strength in cracked		MPa	6.4	6.5	6.5	6.6	6.7	6.8	6.7	6.5	6.4
conc	Temperature	concrete	Tk,cr	(psi)	(930)	(940)	(950)	(960)	(970)	(980)	(970)	(950)	(930)
Dry o er sa	range B ²	Characteristic bond strength in uncracked	_	MPa	8.4	8.3	8.3	8.2	8.0	7.8	7.7	7.7	7.6
Vate		concrete	Tk,uncr	(psi)	(1,220)	(1,210)	(1,200)	(1,190)	(1,160)	(1,140)	(1,120)	(1,110)	(1,100)
>	Anchor Category		-		1	1	1	1	1	1	1	1	1
	Strength Reducti	on factor	$\phi_{d,} \phi_{ws}$		0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
		Characteristic bond strength in cracked		MPa	6.9	6.9	7.0	7.2	7.4	7.4	7.4	7.4	7.2
	Temperature	concrete	Tk,cr	(psi)	(1,000)	(1,010)	(1,020)	(1,040)	(1,070)	(1,080)	(1,080)	(1,070)	(1,050)
	range A ²	Characteristic bond strength in uncracked	_	MPa	9.0	8.9	8.9	8.9	8.8	8.7	8.6	8.6	8.6
Water-filled hole		concrete	Tk, uncr	(psi)	(1,310)	(1,300)	(1,280)	(1,280)	(1,270)	(1,250)	(1,250)	(1,250)	(1,240)
led		Characteristic bond strength in cracked		MPa	4.7	4.8	4.8	5.0	5.1	5.1	5.1	5.1	5.0
er-fi	Temperature	concrete	Tk,cr	(psi)	(690)	(700)	(700)	(720)	(740)	(740)	(740)	(740)	(720)
Vat	range B ²	Characteristic bond	_	MPa	6.2	6.2	6.1	6.1	6.1	6.0	5.9	5.9	5.9
-		strength in uncracked concrete	Tk, uncr	(psi)	(900)	(890)	(890)	(890)	(880)	(870)	(860)	(860)	(860)
	Anchor Category		-	-	3	3	3	3	3	3	3	3	3
	Strength Reducti	on factor	ϕ_{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
		Characteristic bond	_	MPa	6.0	6.1	6.2	6.3	6.6	6.8	6.8	6.8	6.8
	Temperature	strength in cracked concrete	Tk,cr	(psi)	(880)	(890)	(890)	(920)	(960)	(980)	(980)	(990)	(980)
ete	range A ²	Characteristic bond	_	MPa	7.9	7.8	7.8	7.8	7.9	7.8	7.9	8.0	8.0
ncre		strength in uncracked concrete	T _{k,uncr}	(psi)	(1,140)	(1,140)	(1,130)	(1,140)	(1,140)	(1,140)	(1,140)	(1,150)	(1,160)
q co		Characteristic bond		MPa	4.2	4.2	4.3	4.4	4.6	4.7	4.7	4.7	4.7
Submerged concrete	Temperature	strength in cracked concrete	T _{k,cr}	(psi)	(600)	(610)	(620)	(630)	(660)	(680)	(680)	(680)	(680)
pme	range B ²	Characteristic bond		MPa	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.5	5.5
Sul		strength in uncracked concrete	𝒯 _{k,uncr}	(psi)	(790)	(780)	(780)	(790)	(790)	(780)	(790)	(800)	(800)
	Anchor Category		-	-	3	3	3	3	3	3	3	3	3
	Strength Reducti	on factor	ϕ_{uw}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Reduc	tion for seismic te	nsion	a. _{N,seis}	-	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
			•	•	•	•	•	•	•	•	•	•	· · · · · · · · · · · · · · · · · · ·


For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c / 17.2)^{0.25}$] and $(f_c / 2,500)^{0.15}$ for cracked concrete [For SI: $(f_c / 17.2)^{0.15}$]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C). Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 17—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

			Quarteral	11		Nominal rei	nforcing bar dia	ameter (mm)	
DESIG	N INFORMATION	•	Symbol	Units	14	16	20	25	28
Minima	ım Embedment		h	mm	80	80	90	100	112
winnin	im Embedment		h _{ef,min}	(in.)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)
Maxim	um Embedment		b.	mm	280	320	400	500	560
Waxim			h _{ef,max}	(in.)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)
		Characteristic bond strength in cracked		MPa	6.7	6.7	6.8	25 28 100 11: (3.9) (4.4 500 560 (19.7) (22. 6.9 6.8 (995) (980 11.4 11.) (1,650) (1,62 4.8 4.7 (685) (688 (1,140) (1,12 1 1) (1,140) (1,12 1 1 0.65 0.65 0.65 0.66 0.65	6.8
fe	Temperatura	concrete	Tk,cr	(psi)	(965)	(970)	(985)	(995)	(980)
ncre	Temperature range A ²	Characteristic bond strength in		MPa	12.0	11.8	11.6	11.4	11.2
saturated concrete		uncracked concrete	Tk,uncr	(psi)	(1,730)	(1,720)	(1,690)	(1,650)	(1,620)
atura		Characteristic bond strength in cracked		MPa	4.6	4.6	4.7	4.8	4.7
ter s	Temperature	concrete	Tk,cr	(psi)	(665)	(670)	(680)	(685)	(680)
l wat	range B ²	Characteristic bond strength in		MPa	8.3	8.2	8.0	7.8	7.7
Dry and water		uncracked concrete	Tk,uncr	(psi)	(1,200)	(1,190)	(1,160)	(1,140)	(1,120)
	Anchor Category	/	-	-	1	1	1	1	1
	Strength Reduct	ion factor	φd, φws	-	0.65	0.65	0.65	25 100 (3.9) 500 (19.7) 6.9 (995) 11.4 (1,650) 4.8 (685) 7.8 (1,140) 1 0.65	0.65
Reduct	duction for seismic tension		<i>α</i> N,seis	-	0.9	0.9	0.9	0.9	0.9

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ f'c ≤ 8,000 psi).

²Temperature range B: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

EU Metric Reinforcing Bars

Bond Strength

Diamond Core Bit

TABLE 18—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT¹

DEGLON	INFORMATION		Or work at	11			Nom	ninal reinfo	orcing bar	diameter ((mm)		
DESIGN	INFORMATION		Symbol	Units	10	12	14	16	20	25	28 30 112 120 (4.4) (4.7) 560 600 (22.0) (23.7) 8.0 8.0	32	
Minimum	Embedment		h	mm	60	70	80	80	90	100	112	120	128
wiiniiniuni	Embedment		h _{ef,min}	(in.)	(2.4)	(2.8)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)	(4.7)	(5.0)
Movimum	n Embedment		h	mm	200	240	280	320	400	500	560	600	640
	II EIIIbedinent		h _{ef,max}	(in.)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(23.7)	(25.2)
Saturated	Temperature	Characteristic bond strength in uncracked	-	MPa	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
turate	range A ²	concrete	Tk,uncr	(psi)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)	2 120 (4.7) 600 (0) 600 (23.7) 8.0 (1,150) 5.5 (800) 3	(1,150)
Water Sa concrete	Temperature	Characteristic bond strength in uncracked	_	MPa	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
d Wat conc	range B ²	concrete	Tk,uncr	(psi)	(800)	(800)	(800)	(800)	(800)	(800)	(800)	(800)	(800)
Dry and Water concre	Anchor Category		-		2	2	2	3	3	3	3	3	3
Δ	Strength Reduction	on factor	Ød, Øws		0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f_c / 2,500)^{0.25} for uncracked concrete [For SI: (f_c / 17.2)^{0.25}]. See Section 4.1.4 of this report for bond strength determination.

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Metric Threaded Rod

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 19—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED RODS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

DESIGN INFORMATION			Ourseland.	L lusite			N	ominal rod o	diameter (mr	n)		
DESI	GN INF	ORMATION	Symbol	Units	8	10	12	16	20	24	27	30
Minim	um En	nbedment	h _{ef.min}	mm	60	60	70	80	90	100	110	120
		bounding	riei,iimi	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.9)	(4.3)	(4.7)
Maxir	num Er	mbedment	h _{ef,max}	mm (in)	160	200	240	320	400	480	540	600
		Characteristic bond	-	(in.) MPa	(6.3) 8.8	(7.9) 8.8	(9.4) 8.8	(12.6) 8.7	(15.7) 8.6	(18.9) 8.5	(21.4) 8.5	(23.7) 8.4
rete	Temperature range A ²	strength in cracked	Tk,cr	(psi)	0.0 (1,280)	(1,280)	0.0 (1,270)	(1,260)	(1,250)	(1,240)	(1,230)	0.4 (1,220)
ouc	era Je <i>i</i>	concrete		u ,		,	,				,	
Ŭ	empera range <i>i</i>	Characteristic bond	_	MPa	16.7	16.3	16.0	15.2	14.5	13.8	13.2	12.7
ratec	Te	strength in uncracked concrete	T _{k,uncr}	(psi)	(2,420)	(2,370)	(2,320)	(2,210)	(2,100)	(2,000)	(1,920)	(1,840)
atul	e U	Characteristic bond		MPa	6.1	6.1	6.0	6.0	5.9	5.9	5.9	5.8
er S	Temperature range B ²	strength in cracked concrete	Tk,cr	(psi)	(890)	(880)	(880)	(870)	(860)	(860)	(850)	(840)
Vat	empera range	Characteristic bond		MPa	11.5	11.3	11.0	10.5	10.0	9.5	9.1	8.7
and Water Saturated Concrete	Ten	strength in uncracked concrete	Tk,uncr	(psi)	(1,670)	(1,630)	(1,600)	(1,520)	(1,450)	(1,380)	(1,320)	(1,270)
Dry â	Ancho	r Category	-	-	1	1	1	1	1	1	1	1
Δ	Streng	th Reduction factor	φd, φws	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	e	Characteristic bond		MPa	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
	Temperature range A ²	strength in cracked concrete	Tk,cr	(psi)	(940)	(940)	(940)	(940)	(940)	(940)	(950)	(950)
	adr nge	Characteristic bond		MPa	12.3	12.1	11.8	11.4	11.0	10.5	10.2	9.8
Water-filled hole	Ten	strength in uncracked concrete	T _{k,uncr}	(psi)	(1,780)	(1,750)	(1,710)	(1,650)	(1,590)	(1,520)	(1,470)	(1,430)
led	Φ	Characteristic bond		MPa	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
ter-fil	Temperature range B²	strength in cracked concrete	Tk,cr	(psi)	(650)	(650)	(650)	(650)	(650)	(650)	(650)	(650)
Vai	empera range	Characteristic bond		MPa	8.5	8.3	8.2	7.9	7.6	7.2	7.0	6.8
	Ten	strength in uncracked concrete	Tk,uncr	(psi)	(1,230)	(1,210)	(1,180)	(1,140)	(1,100)	(1,050)	(1,020)	(990)
	Ancho	r Category	-	-	3	3	3	3	3	3	3	3
	Streng	th Reduction factor	Øwf	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	e	Characteristic bond		MPa	5.7	5.7	5.7	5.7	5.8	5.9	6.0	6.0
	ratur e A²	strength in cracked concrete	Tk,cr	(psi)	(820)	(820)	(830)	(830)	(840)	(860)	(870)	(870)
ete	empera range	Characteristic bond		MPa	10.7	10.5	10.4	10.1	9.8	9.5	9.3	9.1
ncre	Temperature range A ²	strength in uncracked concrete	Tk,uncr	(psi)	(1,550)	(1,530)	(1,500)	(1,460)	(1,420)	(1,380)	(1,350)	(1,320)
ğ	۵	Characteristic bond		MPa	3.9	3.9	3.9	4.0	4.0	4.1	4.1	4.2
Submerged concrete	ratur e B ²	strength in cracked concrete	Tk,cr	(psi)	(570)	(570)	(570)	(580)	(580)	(590)	(600)	(600)
ũ	ng.	Characteristic bond		MPa	7.4	7.3	7.2	7.0	6.8	6.6	6.4	6.3
Sul	Temperature range B²	strength in uncracked concrete	Tk,uncr	(psi)	(1,070)	(1,060)	(1,040)	(1,010)	(980)	(950)	(930)	(910)
		r Category	-	-	3	3	3	3	3	3	3	3
		th Reduction factor	φuw	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Redu	ction fo	or seismic tension	<i>α</i> N,seis	-	1	0.92	0.93	0.95	1	1	1	1

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength *f_c* = 2,500 psi (17.2 MPa). For concrete compressive strength, *f_c*, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c / 17.2)^{0.25}$] and $(f_c / 2,500)^{0.15}$ for cracked concrete [For SI: $(f_c / 17.2)^{0.15}$]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = $176^{\circ}F(80^{\circ}C)$. Maximum long term temperature = $110^{\circ}F(43^{\circ}C)$. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 20—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DECL	GN INFORMA	TION	Symbol	Units		Nomi	nal rod diameter	' (mm)	
DESI		TION	Symbol	Units	16	20	24	27	30
Minim	num Embedme		h _{ef.min}	mm	80	90	100	110	120
IVIIIIIII			l lef,min	(in.)	(3.1)	(3.5)	(3.9)	(4.3)	(4.7)
Movir	num Embedm	opt	b.	mm	320	400	480	540	600
IVIAXII		ent	h _{ef,max}	(in.)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
		Characteristic bond trength	_	MPa	6.1	6.0	6.0	6.0	5.9
tec	Temp.	in cracked concrete	Tk,cr	(psi)	(880)	(875)	(870)	(860)	(855)
saturated te	range A ²	Characteristic bond trength	_	Mpa	15.2	14.5	13.8	13.2	12.7
sati e		in uncracked concrete	Tk,uncr	(psi)	(2,210)	(2,100)	(2,000)	(1,920)	(1,840)
		Characteristic bond trength		MPa	4.2	4.2	4.2	4.2	4.1
water	Temp.	in cracked concrete	Tk,cr	(psi)	(610)	(605)	(600)	(595)	(590)
~ °	range B ²	Characteristic bond trength	_	MPa	10.5	10.0	9.5	9.1	8.7
and		in uncracked concrete	Tk,uncr	(psi)	(1,520)	(1,450)	(1,385)	(1,320)	(1,270)
Dry	Anchor Cate	gory	-	-	1	1	1	1	1
	Strength Re	duction factor	$\phi_{d,\phi_{WS}}$	-	0.65	0.65	0.65	0.65	0.65
Redu	ction for seism	lic tension	α _N ,seis	-	0.95	1	1	1	1

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ fc ≤ 8,000 psi). ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Metric Threaded Rod

Diamond Core Bit

TABLE 21—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT¹

Bond Strength

DESIGN	INFORMAT		Symbol	Units			Noi	minal rod o	diameter (r	nm)		
DESIGN	INFORMAT		Symbol	Units	8	10	12	16	20	24	27	30
Minimun	n Embedmen	t	h _{ef.min}	mm	60	60	70	80	90	100	110	120
winning	I Linbedmen	ι	l lef,min	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.9)	24 27 100 110 (3.9) (4.3) 480 540 18.9) (21.4) 10.7 10.7 (550) (1,550) 7.4 7.4 (070) (1,070) 3 3	(4.7)
Movimur	n Embodmor	at	h.	mm	160	60 60 70 80 90 100 110 120 2.4) (2.4) (2.8) (3.1) (3.5) (3.9) (4.3) (4.7) 160 200 240 320 400 480 540 600 6.3) (7.9) (9.4) (12.6) (15.7) (18.9) (21.4) (23.7) 10.7 10.7 10.7 10.7 10.7 10.7 10.7 ,550) (1,550) (1,550) (1,550) (1,550) (1,550) (1,550) (1,550) 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4						
							(21.4)	(23.7)				
ted	Temp.	Characteristic bond strength		MPa	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7
and aturated crete	range A ²	in uncracked concrete	𝒯 _{k,uncr}	(psi)	(1,550)	(1,550)	(1,550)	(1,550)	(1,550)	(1,550)	(1,550)	(1,550)
atu sret	Temp.	Characteristic bond strength		MPa	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
	range B ²	in uncracked concrete	𝒯 _{k,uncr}	(psi)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)
Dry Water s cone	Anchor Cate	gory	-	-	2	2	2	3	3	3	3	3
>	Strength Re	duction factor	$\phi_{d,} \phi_{ws}$	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength fc = 2,500 psi (17.2 MPa). For concrete compressive strength, fc, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f_c / 2,500)^{0.25} for uncracked concrete [For SI: (f_c /

17.2)^{0.25}]. See Section 4.1.4 of this report for bond strength determination.

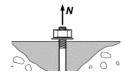
²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

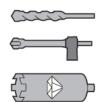
Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Steel Strength

TABLE 22—STEEL DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS¹


DES	DESIGN INFORMATION		Units	Nominal reinforcing bar size							
DES	IGN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M			
Nom	nal bar diameter	d	mm	11.3	16.0	19.5	25.2	29.9			
NOIII		u	(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)			
Por	effective cross-sectional area	Δ	mm ²	100.3	201.1	298.6	498.8	702.2			
Dale		Ase	(in. ²)	(0.155)	(0.312)	(0.463)	(0.773)	(1.088)			
		Nsa	kN	54.0	108.5	161.5	270.0	380.0			
	Nominal strength as governed by steel	INsa	(lb)	(12,175)	(24,408)	(36,255)	(60,548)	(85,239)			
G30	strength	Vsa	kN	32.5	65.0	97.0	161.5	227.5			
-		V sa	(lb)	(7,305)	(14,645)	(21,753)	(36,329)	(51,144)			
CSA	Reduction for seismic shear	∕∕V,seis	-			0.70					
0	Strength reduction factor for tension ²	ϕ	-			0.65					
	Strength reduction factor for shear ²	ϕ	-			0.60					


For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b), ACI 318-14 Eq (17.4.1.2) or Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Other material specifications are admissible. ²For use with the load combinations of ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11

D.4.3, as applicable.

Canadian Reinforcing Bars

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit or Diamond Core Bit

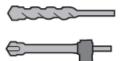
TABLE 23—CONCRETE BREAKOUT DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT), OR DIAMOND CORE BIT

	Symbol	Units		Nonm	inal reinforcing b	ar size							
	Gymbol	Units	10 M	15 M	20 M	25 M	30 M						
Effectiveness factor for cracked concrete	k _{c.cr}	SI		7.1									
	Kc,cr	(in-lb)		(17)									
Effectiveness factor for uncracked concrete	k	SI	10										
	k _{c,uncr}	(in-lb)	(24)										
Minimum Embedment	h	mm	60	80	90	101	120						
	h _{ef,min}	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)						
Manian and Fach a day and	4-	mm	226	320	390	504	598						
Maximum Embedment	h _{ef,max}	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)						
Min. han an a in a3	_	mm	57	80	98	126	150						
Min. bar spacing ³	Smin	(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)						
Min adva diatana 3	_	mm											
Min. edge distance ³	Cmin	(in.)	5d; or see Section	on 4.1.9 of this rep	port for design with	reduced minimun	i edge distances						
Minimum concrete thickness	4	mm	h _{ef} + 30		h _{ef} +	0 -1 (4)							
Minimum concrete thickness	h _{min}	(in.)	$(h_{ef} + 1^{1}/_{4})$		n _{ef} +	200							
Critical edge distance – splitting (for uncracked concrete)	Cac	-		See Se	ection 4.1.10 of this	s report.							
Strength reduction factor for tension, concrete failure modes ²	φ	-			0.65								
Strength reduction factor for shear, concrete failure modes ²	φ	-	0.70										

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 8A, Manufacturers Printed Installation Instructions (MPII).


² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements. ⁴ d_0 = hole diameter.

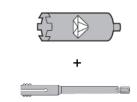
Canadian Reinforcing Bars

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 24—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) 1

DESIGN	INFORMATION		Symbol	Units		Nomi	nal reinforcing b	ar size	
DESIGN			Symbol	Units	10M	15M	20M	25M	30M
Minimum	Embedment		harmin	mm	60	80	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	
	Embedment		r er,min	(in.)	(2.4)	(3.1)			(4.7)
Maximum	n Embedment		h _{ef,max}	mm	-				
		Characteristic bond							
ated	Temperature	strength in cracked	Tk,cr	(psi)	(1,360)	(1,390)			(1,380)
atura	range A ²	Characteristic bond		MPa	12.1	11.8	11.7	11.3	11.1
Dry concrete and Water Saturated Concrete		strength in uncracked concrete	T _{k,uncr}	(psi)	(1,760)	(1,720)	(1,690)	(1,650)	(1,610)
and Wat Concrete		Characteristic bond strength in cracked	Tk.cr	MPa	6.5	6.6	6.7	6.8	6.5
and	Temperature	concrete		(psi)	(940)	(960)			(950)
ete (range B ²	Characteristic bond		MPa	8.4	8.2	8.0	7.8	7.7
oncr		strength in uncracked concrete	Tk,uncr	(psi)	(1,210)	(1,190)	(1,170)	(1,140)	(1,110)
o Lu	Anchor Category	1	-	-	1	1	1	1	1
	Strength Reduct	ion factor	φd, φws	-	0.65	0.65	0.65	0.65	0.65
		Characteristic bond strength in cracked	-	MPa	6.9	7.2	7.3	7.4	7.3
	Temperature	concrete	lk,cr	(psi)	(1,010)	1,760) $(1,720)$ $(1,690)$ $(1,650)$ $(1,610)$ 6.5 6.6 6.7 6.8 6.5 940) (960) (970) (980) (950) 8.4 8.2 8.0 7.8 7.7 $1,210$) $(1,190)$ $(1,170)$ $(1,140)$ $(1,110)$ 1 1 1 1 1 0.65 0.65 0.65 0.65 6.9 7.2 7.3 7.4 7.3 $1,010$) $(1,040)$ $(1,060)$ $(1,080)$ $(1,060)$ 8.9 8.9 8.8 8.6 8.5 $1,300$) $(1,280)$ $(1,270)$ $(1,250)$ $(1,240)$ 4.8 5.0 5.0 5.1 5.0 700) (720) (730) (740) (730) 6.2 6.1 6.1 6.0 5.9 9000 (890) (880) (860) (850) 3 3 3 3 3 0.45 0.45 0.45 0.45 6.1 6.3 6.5 6.8 6.6 880) (920) (940) (980) (960)			
	range A ²	Characteristic bond	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8.6	8.5				
ole		strength in uncracked concrete	Tk,uncr	(psi)	(1,300)	(1,280)	(1,270)	25M 30M 101 120 (4.0) (4.7) 504 598 (19.8) (23.5) 9.8 9.5 (1,420) (1,380) 11.3 11.1 (1,650) (1,610) 6.8 6.5 (980) (950) 7.8 7.7 (1,140) (1,110) 1 1 0.65 0.65 7.4 7.3 (1,080) (1,060) 8.6 8.5 (1,250) (1,240) 5.1 5.0 (740) (730) 6.0 5.9 (860) (850) 3 3 0.45 0.45 6.8 6.6 (980) (960) 7.8 7.8 (1,140) (1,130) 4.7 4.6 (680) (660) 5.4 5.4	
ed h		Characteristic bond		MPa	4.8	5.0	5.0	5.1	5.0
Water-filled hole	Temperature	strength in cracked concrete	Tk,cr	(psi)	(700)	(720)	(730)	(740)	(730)
Vate	range B ²	Characteristic bond		MPa	6.2	6.1	6.1	6.0	5.9
>		strength in uncracked concrete	T _{k,uncr}	(psi)	(900)	(890)	(880)	(860)	(850)
	Anchor Category	,	-	-	3	3	3	3	3
	Strength Reduct	ion factor	ϕ_{wf}	-	0.45	0.45	0.45	0.45	0.45
		Characteristic bond		MPa	6.1	6.3	6.5	6.8	6.6
	Temperature	strength in cracked concrete	$\tau_{k,cr}$	(psi)	(880)	(920)	(940)	(980)	(960)
e	range A ²	Characteristic bond		MPa	7.8	7.8	7.8	7.8	7.8
Icret		strength in uncracked concrete	Tk,uncr	(psi)	(1,130)	(1,140)	(1,140)	(1,140)	(1,130)
COL		Characteristic bond		MPa	4.2	4.4	4.5	4.7	4.6
rged	- ·	strength in cracked concrete	T _{k,cr}	(psi)	(610)	(630)	(650)	(680)	(660)
Submerged concrete	Temperature range B ²	Characteristic bond strength in uncracked	7	MPa	5.4	5.4	5.4	5.4	5.4
<i>w</i>		concrete	↓K,UNCr	(psi)	(780)	(790)	(780)	(780)	(780)
	Anchor Category	,	-	-	3	3	3	3	3
	Strength Reduct		ϕ_{uw}	-					
Reductio	n for seismic tens	ion	αN,seis	-	0.9	0.9	0.9	0.9	0.9

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength fc = 2,500 psi (17.2 MPa). For concrete compressive strength, fc, between 2,500 psi (17.2 MPa) and 8,000 psi (5.2. MPa), the tabulated characteristic bond strength $r_c = 2,300$ psi (17.2 MPa). For concrete strength, r_c , between 2,300 psi (7.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ($f_c / 2,500$)^{0.25} for uncracked concrete [For SI: ($f_c / 17.2$)^{0.15}]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are

roughly constant over significant periods of time.

Canadian Reinforcing Bars

Bond Strength

Diamond Core Bit + Roughening Tool

TABLE 25A—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DEGION			Ourseland.	l lucita	Nominal reinf	orcing bar size
DESIGN	IINFORMATION		Symbol	Units	15M	20M
Minimatur	n Fushadmant		h	mm	80	90
winimur	n Embedment		h _{ef,min}	(in.)	(3.1)	(3.5)
Maximu	m Embadmant		h	mm	320	390
waximu	mum Embedment		h _{ef,max}	(in.)	(12.6)	(15.4)
ete		Characteristic bond strength in	_	MPa	mm 80 (in.) (3.1) mm 320 (in.) (12.6)	6.8
concrete	Temperature range A ²	cracked concrete	Tk,cr	(psi)	(970)	(985)
	remperature range A-	Characteristic bond strength in	-	Units 15M mm 80 (in.) (3.1) mm 320 (in.) (12.6) MPa 6.7 (psi) (970) MPa 11.8 (psi) (1,720) MPa 4.6 (psi) (670) MPa 8.2 (psi) (1,190) 1 0.65	11.7	
atec		uncracked concrete	Tk,uncr	(psi)	(1,720)	(1,690)
aturated		Characteristic bond strength in		MPa	15M 20M 80 90 (3.1) (3.5) 320 390 (12.6) (15.4) 6.7 6.8 (970) (985) 11.8 11.7 (1,720) (1,69) 4.6 4.7 (670) (680) 8.2 8.0 (1,190) (1,170) 1 1 0.65 0.65	4.7
S	Temperature range D ²	cracked concrete	Tk,cr	(psi)	(670)	(680)
and Water	Temperature range B ²	Characteristic bond strength in		MPa	8.2	8.0
≥		uncracked concrete	Tk,uncr	(psi)	(1,190)	(1,170)
	Anchor Category		-		1	1
Dry	Strength Reduction factor		φd, φws		0.65	0.65
Reduction	on for seismic tension		$lpha_{N,seis}$	-	0.9	0.9

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi \leq f'c \leq 8,000 psi). ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = $176^{\circ}F(80^{\circ}C)$, Maximum long term temperature = $110^{\circ}F(43^{\circ}C)$.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Canadian Reinforcing Bars

Bond Strength

Diamond Core Bit

TABLE 25B—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT¹

DESIGN	ESIGN INFORMATION		Symbol	Units	Nominal reinforcing bar size						
DESIGN	INFORMATION		Symbol	Units	10M	15M	20M	25M	30M		
Minimum	Embedment		h _{ef.min}	mm	60	80	90	101	120		
winning	Linbedment		l let, min	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)		
Maximum	Embedment	h _{ef.max}	mm	226	320	390	504	598			
Waximum	Linbedment		Het,max	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)		
ъ	Temperature range A ²	Characteristic bond strength in	-	MPa	8.0	8.0	8.0	8.0	8.0		
Water ated rete	Temperature range A	uncracked concrete	Tk,uncr	(psi)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)		
	Tomporatura rango P ²	Characteristic bond strength in	_	MPa	5.5	5.5	5.5	5.5	5.5		
and atur	P S C Temperature range B ² uncracked concrete		Tk,uncr	(psi)	(800)	(800)	(800)	(800)	(800)		
≥ ∞ s	Anchor Category		-	-	2	3	3	3	3		
Δ	5 Strength Reduction factor			-	0.55	0.45	0.45	0.45	0.45		

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)^{0.25} for uncracked concrete [For SI: (f'c / 17.2)^{0.25}]. See Section 4.1.4 of this report for bond strength determination.

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

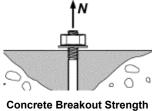
Fractional and Metric HIS-N and HIS-RN Internal Threaded Insert

Steel Strength

DESIC	GN INFORMATION	Symbol	Units	Nomina	al Bolt/Cap (in.) Fra	o Screw D actional	iameter	Units	No		lt/Cap Scr mm) Metr	ew Diame ic	ter
		-		³ / ₈	¹ / ₂	⁵ /8	³ / ₄		8	10	12	16	20
		_	in.	0.65	0.81	1.00	1.09	mm	12.5	16.5	20.5	25.4	27.6
HIS IN	sert O.D.	D	(mm)	(16.5)	(20.5)	(25.4)	(27.6)	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
	oort longth		in.	4.33	4.92	6.69	8.07	mm	90	110	125	170	205
піз III	sert length	I	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.54)	(4.33)	(4.92)	(6.69)	(8.07)
	ffective cross-	A _{se}	in. ²	0.0775	0.1419	0.2260	0.3345	mm ²	36.6	58	84.3	157	245
	nal area	7 130	(mm ²)	(50)	(92)	(146)	(216)	(in. ²)	(0.057)	(0.090)	(0.131)	(0.243)	(0.380)
	sert effective cross-	Ainsert	in. ²	0.178	0.243	0.404	0.410	mm^2	51.5	108	169.1	256.1	237.6
sectio	nal area		(mm²)	(115)	(157)	(260)	(265)	(in.²)	(0.080)	(0.167)	(0.262)	(0.397)	(0.368)
	Nominal steel	Nsa	lb	9,690	17,740	28,250	41,815	kN	-	-	-	-	-
B	strength – ASTM		(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(lb)	-	-	-	-	-
193	A193 B7 ³ bolt/cap screw	Vsa	lb	5,815	10,645	16,950	25,090	kN	-	-	-	-	-
₹	sciew	V sa	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(lb)	-	-	-	-	-
ASTM A193 B7	Nominal steel		lb	12,645	17,250	28,680	29,145	kN	-	-	-	-	-
4	strength – HIS-N insert	N _{sa}	(kN)	(56.3)	(76.7)	(127.6)	(129.7)	(lb)	-	-	-	-	-
			lb	8,525	15,610	24,860	36,795	kN	_	-	-	-	-
ss SS	Nominal steel strength – ASTM	Nsa	(kN)	(37.9)	(69.4)	(110.6)	(163.7)	(lb)	-	-	-	_	-
A19: M 3	A193 Grade B8M SS		lb	5,115	9,365	14,915	22,075	kN	_	-	_	_	-
N N	bolt/cap screw	Vsa	(kN)	(22.8)	(41.7)	(66.3)	(98.2)	(lb)	_	_	_	_	_
ASTM A193 Grade B8M SS	Nominal steel		lb	18,065	24.645	40,970	41,635	(ID) kN	_	-	_	_	
0	strength –	N _{sa}	(kN)	(80.4)	(109.6)	(182.2)	(185.2)	(lb)	_	_	_	_	_
·	HIS-RN insert		lb	(00.4)	(100.0)	-	-	(ID) kN	29.5	46.5	67.5	125.5	196.0
	Nominal steel	Nsa	(kN)	-	-	-	-	(lb)	(6,582)	(10,431)	(15,161)	(28,236)	(44,063)
8 -1 8 -1 8 -1	strength – ISO 898-1 Class 8.8 bolt/cap		lb	_	_	_	_	(ID) kN	17.5	28.0	40.5	75.5	117.5
SO 898-1 Class 8.8	screw	Vsa	(kN)	_	_		-	(lb)	(3,949)	(6,259)	(9,097)	(16,942)	(26,438)
<u>8</u> 8	Nominal steel		lb		_	_	_	(ID) kN	25.0	53.0	83.0	125.5	116.5
	strength –	Nsa	(kN)	_	-	_	-	(lb)	(5,669)	(11,894)	(18,628)	(28,210)	(26,176)
·	HIS-N insert		(KN) Ib	-	-	-	-	(ID) kN	25.5	40.5	59.0	110.0	171.5
lss ss	Nominal steel strength – ISO 3506-	Nsa		-									
nles I	1 Class A4-70		(kN)	-	-	-	-	(lb)	(5,760)	(9,127)	(13,266)	(24,706)	(38,555)
6-1 Stai	Stainless bolt/cap	Vsa	lb	-	-	-	-	kN	15.5	24.5	35.5	66.0	103.0
O 3506-1 Class 4-70 Stainless	screw		(kN)	-	-	-	-	(lb)	(3,456)	(5,476)	(7,960)	(14,824)	(23,133)
04	Nominal steel strength –	Nsa	lb	-	-	-	-	kN	36.0	75.5	118.5	179.5	166.5
<u>.</u>	HIS-RN insert	Ivsa	(kN)	-	-	-	-	(lb)	(8,099)	(16,991)	(26,612)	(40,300)	(37,394)
Reduc	tion for seismic shear	αv,seis	-		0.	94		-			0.94		
Streng for ten	oth reduction factor	φ	- 0.65 -			-	- 0.65						
Streng for she	th reduction factor ear ²	φ	-		0.	60		-			0.60		

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi


¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b), ACI 318-14 Eq (17.4.1.2) or Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must be appropriate for the rod. ²For use with the load combinations of ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. Values correspond to a brittle steel element for the HIS insert.

³For the calculation of the design steel strength in tension and shear for the bolt or screw, the ϕ factor for ductile steel failure according to ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, can be used.

Fractional and Metric HIS-N and HIS-RN

Internal Threaded Insert

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 27—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

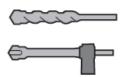
DESIGN INFORMATION	Symbol	Units	Nomina	l Bolt/Caı (in.) Fra	o Screw D actional	liameter	Units	No		t/Cap Scr nm) Metr	ew Diame ic	eter		
	-		³ /8	¹ / ₂	⁵ /8	³ /4		8	10	12	16	20		
Effectiveness factor for	le le	in-lb		1	7		SI			7.1				
cracked concrete	K _{c,cr}	(SI)		(7	.1)		(in-lb)	(17)						
Effectiveness factor for	k	in-lb		2	4		SI			10				
uncracked concrete	K c,uncr	(SI)		(1	0)		(in-lb)	(24)						
Effective embedment denth	h	in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈	mm	90	110	125	170	205		
Effective embedment depth	h _{ef}	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)		
Min analan ana ing 3	_	in.	3 ¹ / ₄	4	5	5 ¹ / ₂	mm	63	83	102	127	140		
Min. anchor spacing ³	Smin	(mm)	(83)	(102)	(127)	(140)	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)		
	C .	in.	3 ¹ / ₄	4	5	5 ¹ / ₂	mm	63	83	102	127	140		
	C _{min}	(mm)	(83)	(102)	(127)	(140)	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)		
Minimum concrete	<i>h</i>	in.	5.9	6.7	9.1	10.6	mm	120	150	170	230	270		
thickness	h _{min}	(mm)	(150)	(170)	(230)	(270)	(in.)	(4.7)	(5.9)	(6.7)	(9.1)	(10.6)		
Critical edge distance – splitting (for uncracked concrete)	Cac	-	See S	ection 4.1	.10 of this	report	-	y,	See Sectio	n 4.1.10 c	f this repo	rt		
Strength reduction factor for tension, concrete failure modes ²	φ	-		0.	65		-			0.65				
Strength reduction factor for shear, concrete failure modes ²	φ	-		0.	70		-			0.70				

For **SI**: 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 8A, Manufacturers Printed Installation Instructions (MPII).


²The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.


³For installations with 1³/4-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

Fractional and Metric HIS-N and HIS-RN

Internal Threaded Insert

Carbide Bit or Hilti Hollow Carbide Bit

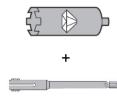
TABLE 28—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

DESIGN			Cumhal	Units	Nominal	bolt/cap s	crew dian	neter (in.)	Unite	Nor	ninal bolt/o	cap screw	diameter (mm)
DESIGN	INFOR	RMATION	Symbol	Units	³ /8	¹ / ₂	⁵ /8	³ /4	Units	8	10	12	16	20
Embedn	nent		hef	in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈	mm	90	110	125	170	205
			116/	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
	e	Characteristic bond strength in cracked		psi	1,070	1,070	1,070	1,070	MPa	7.4	7.4	7.4	7.4	7.4
(I)	e A	concrete	Tk,cr	(MPa)	(7.4)	(7.4)	(7.4)	(7.4)	(psi)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)
d cret	Temperature range A ²	Characteristic bond		psi	1,790	1,790	1,790	1,790	MPa	12.3	12.3	12.3	12.3	12.3
Dry concrete and Water saturated concrete	Te	strength in uncracked concrete	Tk,uncr	(MPa)	(12.3)	(12.3)	(12.3)	(12.3)	(psi)	(1,790)	(1,790)	(1,790)	(1,790)	(1,790)
rete Ited	ē	Characteristic bond		psi	740	740	740	740	MPa	5.1	5.1	5.1	5.1	5.1
conc	Temperature range B²	strength in cracked concrete	Tk,cr	(MPa)	(5.1)	(5.1)	(5.1)	(5.1)	(psi)	(740)	(740)	(740)	(740)	(740)
Dry (npe ang	Characteristic bond		psi	1,240	1,240	1,240	1,240	MPa	8.5	8.5	8.5	8.5	8.5
Vate	Tel	strength in uncracked concrete	τ _{k,uncr}	(MPa)	(8.5)	(8.5)	(8.5)	(8.5)	(psi)	(1,240)	(1,240)	(1,240)	(1,240)	(1,240)
>	Ancho	r Category	-	-	1	1	1	1	-	1	1	1	1	1
	Streng	th Reduction factor	Ød, Øws	-	0.65	0.65	0.65	0.65	-	0.65	0.65	0.65	0.65	0.65
	re	Characteristic bond		psi	800	810	820	820	MPa	5.5	5.5	5.6	5.7	5.7
	ratu e A²	strength in cracked concrete	T _{k,cr}	(MPa)	(5.5)	(5.6)	(5.7)	(5.7)	(psi)	(790)	(800)	(810)	(820)	(820)
	Temperature range A ²	Characteristic bond		psi	1,340	1,350	1,370	1,380	MPa	9.1	9.2	9.3	9.5	9.5
Water-filled hole	Te L	strength in uncracked concrete	Tk,uncr	(MPa)	(9.2)	(9.3)	(9.5)	(9.5)	(psi)	(1,330)	(1,340)	(1,350)	(1,370)	(1,380)
led	е	Characteristic bond		psi	550	560	570	570	MPa	3.8	3.8	3.8	3.9	3.9
er-fil	emperature range B²	strength in cracked concrete	Tk,cr	(MPa)	(3.8)	(3.8)	(3.9)	(3.9)	(psi)	(550)	(550)	(560)	(570)	(570)
Nate	empera range l	Characteristic bond		psi	920	930	950	950	MPa	6.3	6.4	6.4	6.5	6.6
	Ter	strength in uncracked concrete	$\tau_{k,uncr}$	(MPa)	(6.4)	(6.4)	(6.5)	(6.6)	(psi)	(920)	(920)	(930)	(950)	(950)
	Ancho	r Category	-	-	3	3	3	3	-	3	3	3	3	3
	Streng	th Reduction factor	ϕ_{wf}	-	0.45	0.45	0.45	0.45	-	0.45	0.45	0.45	0.45	0.45
	e	Characteristic bond		psi	710	720	750	750	MPa	4.8	4.9	5.0	5.1	5.2
	Temperature range A ²	strength in cracked concrete	T _{k,cr}	(MPa)	(4.9)	(5.0)	(5.1)	(5.2)	(psi)	(700)	(710)	(720)	(750)	(750)
ste	mpe ang	Characteristic bond		psi	1,190	1,210	1,250	1,260	MPa	8.0	8.2	8.4	8.6	8.7
ncre	Tel	strength in uncracked concrete	Tk,uncr	(MPa)	(8.2)	(8.4)	(8.6)	(8.7)	(psi)	(1,160)	(1,190)	(1,210)	(1,250)	(1,260)
d co	e	Characteristic bond		psi	490	500	510	520	MPa	3.3	3.4	3.4	3.5	3.6
rgeo	ratu ∍ B²	strength in cracked concrete	T _{k,cr}	(MPa)	(3.4)	(3.4)	(3.5)	(3.6)	(psi)	(480)	(490)	(500)	(510)	(520)
Submerged concrete	Temperature range B²	Characteristic bond		psi	820	840	860	870	MPa	5.5	5.6	5.8	5.9	6.0
Sul	Ter	strength in uncracked concrete	Tk,uncr	(MPa)	(5.6)	(5.8)	(5.9)	(6.0)	(psi)	(800)	(820)	(840)	(860)	(870)
		r Category	1 -	-	3	3	3	3	-	3	3	3	3	3
		th Reduction factor	φυω	-	0.45	0.45	0.45	0.45	-	0.45	0.45	0.45	0.45	0.45
Dealuratio	n for o	eismic tension	αN,seis	_	1	1	1	1	-	1	1	1	1	1

For **SI**: 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f_c / 2,500)^{0.25} for uncracked concrete [For SI: (f_c / 17.2)^{0.25}] and (f_c / 2,500)^{0.15} for cracked concrete [For SI: (f_c / 17.2)^{0.15}]. See Section 4.1.4 of this report for bond strength determination.


²⁷ Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Bond Strength

Fractional and Metric HIS-N and HIS-RN Internal Threaded Insert

Diamond Core Bit + **Roughening Tool**

TABLE 29—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DESIC		DN	Symbol	Units		al bolt/cap liameter (in		Units	Nominal bolt/cap screw diameter (mm)			
					¹ / ₂	⁵ /8	³ /4		12	16	20	
Embe	dment		h _{ef}	in.	5	6¾	8 ¹ /8	mm	125	170	205	
			(mm)	(125)	(170)	(205)	(in.)	(4.9)	(6.7)	(8.1)		
ð	Temperature range A ² Characteristic bond strength in cracked Characteristic bond characteristic bond characteristic bond characteristic bond characteristic bond		_	psi	750	750	750	MPa	5.2	5.2	5.2	
urate			T _{k,cr}	(MPa)	(5.2)	(5.2)	(5.2)	(psi)	(750)	(750)	(750)	
Satı	range A ²			psi	1,790	1,790	1,790	MPa	12.3	12.3	12.3	
ater e		concrete	Tk,uncr	(MPa)	(12.3)	(12.3)	(12.3)	(psi)	(1,790)	(1,790)	(1,790)	
cret (Characteristic bond		psi	515	515	515	MPa	3.6	3.6	3.6	
e and Water Concrete	Temperature	strength in cracked concrete	Tk,cr	(MPa)	(3.6)	(3.6)	(3.6)	(psi)	(515)	(515)	(515)	
concrete	range B ²	Characteristic bond strength in uncracked	-	psi	1,240	1,240	1,240	MPa	8.5	8.5	8.5	
conc		concrete	T _{k,uncr}	(MPa)	(8.5)	(8.5)	(8.5)	(psi)	(1,240)	(1,240)	(1,240)	
	Anchor Categor	у	-	-	1	1	1	-	1	1	1	
	Strength Reduc	tion factor	$\phi_{d,}\phi_{ws}$	-	0.65	0.65	0.65	-	0.65	0.65	0.65	
Reduc	tion for seismic t	αN,seis	-	1	1	1	-	1	1	1		

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi \leq f'c \leq 8,000 psi. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional and Metric HIS-N and HIS-RN Internal Threaded Insert

Bond Strength

Diamond Core Bit

TABLE 30—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT¹

DESIG	N INFORMATIO	N	Symbol	Units	Nominal bolt/cap screw diameter s (in.)					Nominal bolt/cap screw diameter (mm)				
					³ /8	¹ / ₂	⁵ /8	³ /4		8	10	12	16	20
Embed	ment		h _{ef}	in. (mm)	4 ³ / ₈ (110)	5 (125)	6 ³ / ₄ (170)	8 ¹ / ₈ (205)	mm (in.)	90 (3.5)	110 (4.3)	125 (4.9)	170 (6.7)	205 (8.1)
d Water Icrete	Temperature range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	psi (MPa)	1,200 (8.3)	1,200 (8.3)	1,200 (8.3)	1,200 (8.3)	MPa (psi)	8.3 (1,200)	8.3 (1,200)	8.3 (1,200)	8.3 (1,200)	8.3 (1,200)
concrete and aturated Conc	Temperature range B ²	Characteristic bond strength in uncracked concrete	Tk,uncr	psi (MPa)	830 (5.7)	830 (5.7)	830 (5.7)	830 (5.7)	MPa (psi)	5.7 (830)	5.7 (830)	5.7 (830)	5.7 (830)	5.7 (830)
Dry o Sat	Anchor Categor	у	-	-	3	3	3	3	-	2	3	3	3	3
Ō	Strength Reduc	tion factor	$\phi_{d,} \phi_{ws}$	-	0.45	0.45	0.45	0.45	-	0.55	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f_c / 2,500)^{0.25} for uncracked concrete [For SI: (f_c / $^{17.20^{26}}$. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 31—DEVELOPMENT LENGTH FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR CORE DRILLED WITH A DIAMOND CORE BIT OR A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL 1,2,5,6

		Critoria Soction of		Bar Size									
DESIGN INFORMATION	Symbol	Criteria Section of Reference Standard	Units	#3	#4	#5	#6	#7	#8	#9	#10		
Nominal reinforcing bar	d _b	ASTM A615/A706	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.125	1.250		
diameter	U _b	ASTM A015/A706	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)		
Nominal bar area	Δ	ASTM A615/A706	in²	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27		
Nominal bar area	Ab	AS TNI A015/A700	(mm ²)	(71.3)	(126.7)	(197.9)	(285.0)	(387.9)	(506.7)	(644.7)	(817.3)		
Development length for $f_y = 60$ ksi and $f_c = 2,500$ psi (normal weight concrete) ^{3,4}	I _d	ACI 318-19 25.4.2.4 ACI 318-14 25.4.2.3 ACI 318-11 12.2.3	in.	12.0	14.4	18.0	21.6	31.5	36.0	40.5	45.0		
			(mm)	(304.8)	(365.8)	(457.2)	(548.6)	(800.1)	(914.4)	(1028.7)	(1143.0)		
Development length for $f_y = 60$ ksi and $f'_c = 4,000$ psi (normal	la	ACI 318-19 25.4.2.4 ACI 318-14 25.4.2.3	in.	12.0	12.0	14.2	17.1	24.9	28.5	32.0	35.6		
weight concrete) ^{3,4}	10	ACI 318-11 12.2.3	(mm)	(304.8)	(304.8)	(361.4)	(433.7)	(632.5)	(722.9)	(812.8)	(904.2)		

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

²Development lengths in SDC C through F must comply with ACI 318 (-19 or -14) Chapter 18 or ACI 318-11 Chapter 21, as applicable, and section 4.2.4 of this report.

³ For all-lightweight concrete, increase development length by 33% unless the provisions of ACI 318-19 25.4.2.5 or ACI 318-14 25.4.2.4 are met to permit λ > 0.75. For sand-lightweight concrete, increase development length by 18% unless the provisions of ACI 318-19 25.4.2.5 or ACI 318-14 25.4.2.4 are met to permit λ > 0.85

 $\left(\frac{c_b+K_{tr}}{d_b}\right)$ = 2.5, ψ_l =1.0, ψ_s =0.8 for $d_b \le$ #6,1.0 for $d_b >$ #6

⁵Calculations may be performed for other steel grades per ACI 318 (-19 or -14) Chapter 25 or ACI 318-11 Chapter 12.

⁶Minimum development length shall not be less than 12 in (305 mm) per ACI 318 (-19 or -14) Section 25.4.2.1.

TABLE 32—DEVELOPMENT LENGTH FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR CORE DRILLED WITH A DIAMOND CORE BIT OR A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL^{1,2,5,4}

		Criteria Section of				Bar	Size		
DESIGN INFORMATION	DESIGN INFORMATION Symbol Reference		Units	10	12	16	20	25	32
Nominal reinforcing bar	db	BS4449: 2005	mm	10	12	16	20	25	32
diameter	Ub	D34449.2003	(in.)	(0.394)	(0.472)	(0.630)	(0.787)	(0.984)	(1.260)
Nominal bar area	Δ	BS 4449: 2005	mm ²	78.5	113.1	201.1	314.2	490.9	804.2
Nominal bar area Ab	Ab	BS 4449: 2005	(in ²)	(0.12)	(0.18)	(0.31)	(0.49)	(0.76)	(1.25)
Development length for $f_v = 72.5$ ksi and $f_c = 2,500$,	ACI 318-19 25.4.2.4 ⁷	mm	348	417	556	871	1087	1392
psi (normal weight concrete) ^{3,4}	la	ACI 318-14 25.4.2.3 ACI 318-11 12.2.3	(in.)	(13.7)	(16.4)	(21.9)	(34.3)	(42.8)	(54.8)
Development length for f _y = 72.5 ksi and f _c = 4,000 psi (normal weight concrete) ^{3,4}		ACI 318-19 25.4.2.4 ⁷ ACI 318-14 25.4.2.3	mm	305	330	439	688	859	1100
	l _d	ACI 318-14 25.4.2.3 ACI 318-11 12.2.3	(in.)	(12.0)	(13.0)	(17.3)	(27.1)	(33.8)	(43.3)

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

²Development lengths in SDC C through F must comply with ACI 318 (-19 or -14) Chapter 18 or ACI 318-11 Chapter 21 and section 4.2.4 of this report. ³ For all-lightweight concrete, increase development length by 33% unless the provisions of ACI 318-19 25.4.2.5 or ACI 318-14 25.4.2.4 are met to permit λ > 0.75. For sand-lightweight concrete, increase development length by 18% unless the provisions of ACI 318-19 25.4.2.5 or ACI 318-14 25.4.2.4 are met to permit λ > 0.85

 $\frac{4}{d_{b+K_{tr}}} = 2.5, \ \psi_{t} = 1.0, \ \psi_{e} = 1.0, \ \psi_{s} = 0.8 \ \text{for } d_{b} < 20 \ \text{mm}, 1.0 \ \text{for } d_{b} \ge 20 \ \text{mm}$

⁵Calculations may be performed for other steel grades per ACI 318 (-19 or -14) Chapter 25 or ACI 318-11 Chapter 12.

⁶Minimum development length shall not be less than 12 in (305 mm) per ACI 318 (-19 or -14) Section 25.4.2.1. ⁷ I_d must be increased by 9.5% to account for ψ_g in ACI 318-19 25.4.2.4. ψ_g has been interpolated from Table 25.4.2.5 of ACI 318-19 for f_y = 72.5 ksi.

TABLE 33—DEVELOPMENT LENGTH FOR CANADIAN REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR CORE DRILLED WITH A DIAMOND CORE BIT OR A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL ^{1,2,5,6}

		Criteria Section of				Bar Size		
DESIGN INFORMATION	Symbol	Reference Standard	Units	10M	15M	20M	25M	30M
Nominal reinforcing bar	db	CAN/CSA-G30.18 Gr.400	mm	11.3	16.0	19.5	25.2	29.9
diameter	Ub	CAN/CSA-G30.18 G1.400	(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)
Neminal har area		CAN/CSA C20 19 Cz 400	mm ²	100.3	201.1	298.6	498.8	702.2
Nominal bar area Ab	Ab	CAN/CSA-G30.18 Gr.400	(in ²)	(0.16)	(0.31)	(0.46)	(0.77)	(1.09)
Development length for	,	ACI 318-19 25.4.2.4 ACI 318-14 25.4.2.3 ACI 318-11 12.2.3	mm	315	445	678	876	1,041
T_y = 58 ksi and T_c = 2,500 psi (normal weight concrete) ^{3,4}	$f_y = 58$ ksi and $f_c = 2,500$ psi l_d (normal weight concrete) ^{3,4}		(in.)	(12.4)	(17.5)	(26.7)	(34.5)	(41.0)
Development length for $f = 58$ ksi and $f = 4,000$ psi		ACI 318-19 25.4.2.4	mm	305	353	536	693	823
$f_y = 58$ ksi and $f_c = 4,000$ psi (normal weight concrete) ^{3,4}	Id ACI 318-14 25.4.2.3 ACI 318-11 12.2.3	(in.)	(12.0)	(13.9)	(21.1)	(27.3)	(32.4)	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

²Development lengths in SDC C through F must comply with ACI 318 (-19 or -14) Chapter 18 or ACI 318-11 Chapter 21 and section 4.2.4 of this report. ³ For all-lightweight concrete, increase development length by 33% unless the provisions of ACI 318-19 25.4.2.5 or ACI 318-14 25.4.2.4 are met to permit $\lambda > 0.75$. For sand-lightweight concrete, increase development length by 18% unless the provisions of ACI 318-19 25.4.2.5 or ACI 318-14 25.4.2.4 are met to permit $\lambda > 0.75$. 0.85.

 $4\left(\frac{c_b+K_{tr}}{d_b}\right) = 2.5, \psi_t=1.0, \psi_e=1.0, \psi_s=0.8 \text{ for } d_b < 20M, 1.0 \text{ for } d_b \ge 20M$

⁵Calculations may be performed for other steel grades per ACI 318 (-19 or -14) Chapter 25 or ACI 318-11 Chapter 12.

⁶Minimum development length shall not be less than 12 in (305 mm) per ACI 318 (-19 or -14) Section 25.4.2.1.

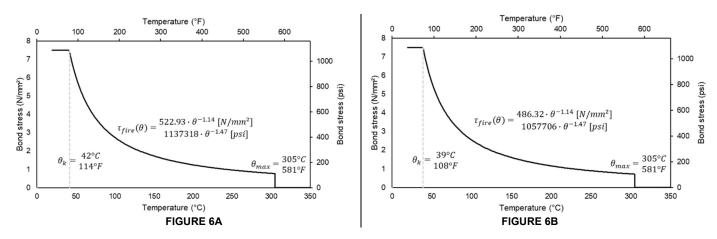
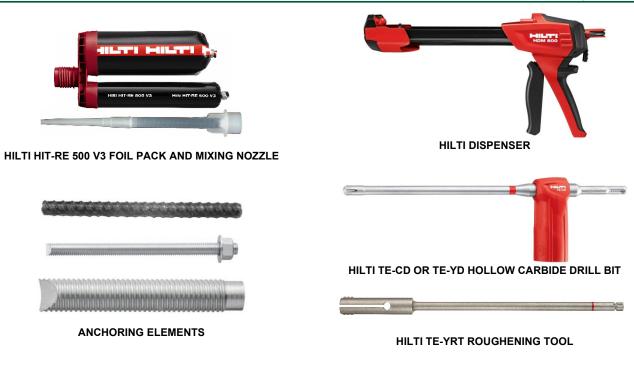
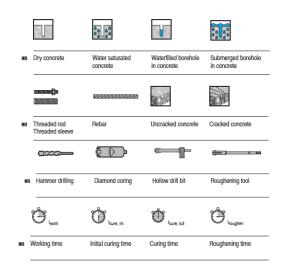
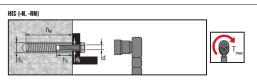



FIGURE 6 – BOND STRESS VS TEMPERATURE OF POST INSTALLED REINFORCING BAR APPLICATIONS SUBJECT TO ELEVATED TEMPERATURE / FIRE. FIGURE 6A FOR SHORT TERM LOADS INCLUDING SEISMIC; FIGURE 6B FOR SUSTAINED LOADS INCLUDING SEISMIC

HIT-V (-R, -F, -HCR) / HAS-E (-B7) / HAS-R

HAS / HIT-V


	Ø d _o	h _{ef}	Ødţ	T _{max}	T _{max}
Ø d [inch]	[inch]	[inch]	[inch]	[ft-lb]	[Nm]
3/8	7/16	2 3/8 7 1/2	7/16	15	20
1/2	9/16	2 3/4 10	9/16	30	41
5/8	3/4	3 1/8 12 1/2	11/16	60	81
3/4	7/8	3 1/2 15	13/16	100	136
7/8	1	3 1/2 17 1/2	15/16	125	169
1	1 ¹ /8	420	1 ¹ /8	150	203
1 ¹ /4	1 3/8	525	1 ³ ⁄/8	200	271


HIT-V

Ø d [mm]	Ø d₀ [mm]	h _{er} [mm]	Ø d _r [mm]	T _{max} [Nm]
M8	10	60160	9	10
M10	12	60200	12	20
M12	14	70240	14	40
M16	18	80320	18	80
M20	22	90400	22	150
M24	28	100480	26	200
M27	30	110540	30	270
M30	35	120600	33	300

1 inch = 25,4 mm

	0000		h _{ef}	- - - - -	📀
1		⁷ / ₁₆ " 1 ³ /4" 1040 mm	2 ³ /8"10" 60250 mm		▶ 16 17
2		⁷ /16" 1 ³ /4"	2 ³ ⁄8"75"		▶ 18 19
3		1040 mm	601920 mm	Q	▶ 20 21
4		⁷ ⁄ ₁₆ " 1 ³ ⁄4" 1040 mm	2 ³ /8"10" 60250 mm		▶ 22 23
5	Ū	⁷ ⁄ ₁₆ " 1 ³ ⁄4" 1040 mm	2 ³ /8"75" 601920mm		◆ 24 25
6		⁷ /16" 1 ³ /4" 1040 mm	2 ³ %"25" 60640 mm		▶ 26 27
7		⁹ ⁄16"1 ¹ ⁄8" 1432 mm	2 ³ ⁄%"10" 60250 mm		▶ 28 29

Ø d [inch]	Ø d₀ [inch]	h _{er} [inch]	Ø d _r [inch]	h₅ [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	¹¹ / ₁₆	4 ³ /8	7/16	3/815/16	15	20
1/2	7/8	5	9/16	1/21 3/16	30	41
5/8	1 ¹ /8	6 ³ /4	11/16	5/81 1/2	60	81
3/4	1 1/4	8 ¹ /8	13/16	3/417/8	100	136

) Ød[mm]	Ø d₀ [mm]	h _{et} [mm]	Ø d _t [mm]	h₅ [mm]	T _{max} [Nm]
M8	14	90	9	820	10
M10	18	110	12	1025	20
M12	22	125	14	1230	40
M16	28	170	18	1640	80
M20	32	205	22	2050	150

2/1 M8 14 90 9 M10 18 110 12

Rebar		
200000000	Ø d _o	
	[inch]	[inch]
#3	1/2	2 3/822 1/2
#4	5/8	23/430
#5	3/4	3 1/837 1/2
#6	7/8	31/215
#0	1	1545
#7	1	3 1/217 1/2
# /	1 1/8	17 1/252 1/2
#8	1 1/8	420
#0	1 1/4	2060
#9	1 3/8	4 1/267 1/2
#10	1 1/2	575
# 11	13/.	51/ 821/

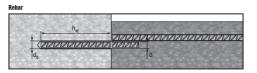
CA Rebar

20000000	Ø d _o	h _{et}
d	[inch]	[mm]
10 M	9/16	70678
15 M	3/4	80960
20 M	1	901170
25 M	1 1/4 (32 mm)	1011512
30 M	1 1/2	1201794
		1 inch = 25,4 mm

	HAS	HIS-N	Rebar	HIT-RB	HIT-SZ	HIT-DL	TE-YRT
d ₀ (inch)		d [inch]		[inch]	[inch]	[inch]	[inch]
7/16	36	-	-	7/16	-	-	
1/2	-	-	#3	1/2	1/2	1/2	
9/16	1/2	-	10M	3/16	9/16	9/16	
5/6	-	-	#4	5/8	5/8	9/16	
11/16	-	3/8	-	11/16	11/16	11/16	
34	5 <u>6</u>	-	15M #5	3/4	3/4	3/4	3/4
7/8	36	1/2	#6	7/8	7/8	7/8	7/8
1	7/6	-	20M #6 #7	1	1	1	1
11/6	1	56	#7 #8	1 1/8	1 1/8	1	11/6
11/4	-	3/4	25M #8	1 1/4	1 1/4	1	
136	11/4	-	#9	13/8	136	136	13/8
1 1/2	-	-	30M #10	1 1/2	1 1/2	136	
134	-	-	#11	1 3/4	13/4	136	

HIT-DL: het > 10" HIT-RB: het > 20 x d H

		- 1	
EA)	HIT-RE-M		HIT-OHW
6-4			
	Art. No.	U U	Art. No.
Hiti VC	337111	HDM 330 HDM 500	387550
Till VO	35/111	HDE 500-A18	307330
500			


0	h _e	R	3
d₀[inch]	[inch]	Art. No. 381215	-
7/18"	2 %" 52 1/2"	V	≥ 6 bar/90 psi @ 6 m³/h
1 3/4"1 3/2"	4°75°	-	≥ 140 m9/h/≥ 82 CFM

	Cello Cello				
	[°F]	[°C]	🕒 t _{eok}	ture, ini	U love, M
202 -	23	-5	2 h	48 h	168 h
	32	0	2 h	24 h	36 h
	40	4	2 h	16 h	24 h
	50	10	1.5 h	12 h	16 h
	60	16	1 h	8 h	16 h
	72	22	25 min	4 h	6.5 h
	85	29	15 min	2.5 h	5 h
	95	35	12 min	2 h	4.5 h
	105	41	10 min	2 h	4 h

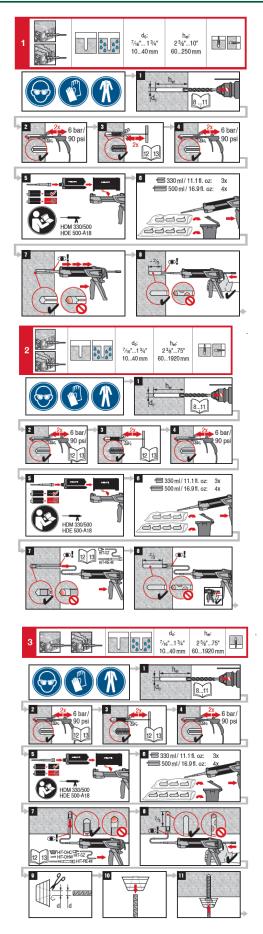
E ≥ +5 °C / 41 °F

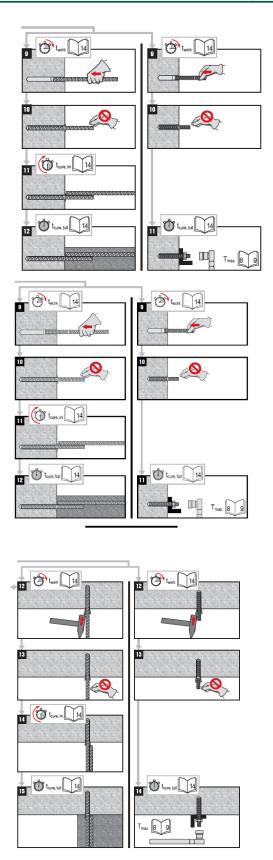
= 2x t_{oure}

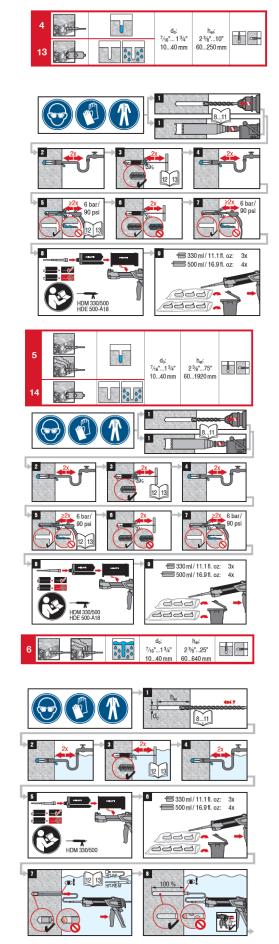
h _e , [inch]	h _e [mm]	😛 t _{roughen}			
0 4	0 100	10 sec			
4.018	101 200	20 sec			
8.01 12	201 300	30 sec			
12.01 16	301 400	40 sec			
16.01 20	401 500	50 sec			
t _{roughen} = h _{ef} [inch] * 2.5	t _{roughen} = h _{ef} [mm] / 10				

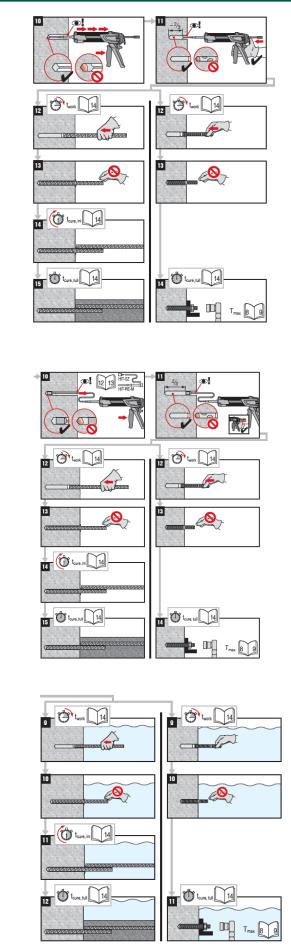
EU Reba

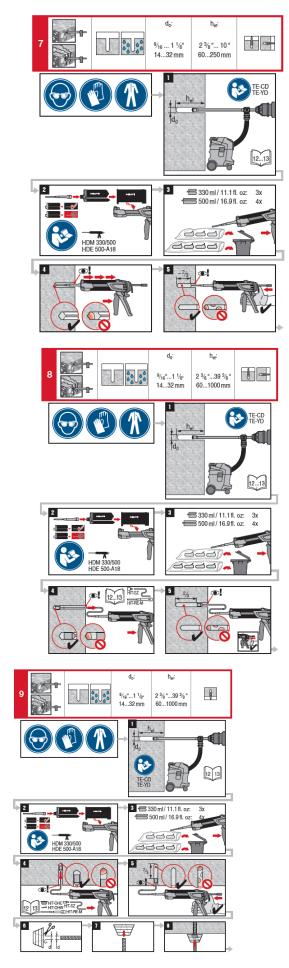
Ø d [mm]	Ø d₀ [mm]	h _{ef} [mm]
8	12	60480
10	14	60600
12	16	70720
14	18	75840
16	20	80960
18	22	851080
20	25	901200
22	28	951320
24	32	961440
25	32	1001500
26	35	1041560
28	35	1121680
30	37	1201800
32	40	1281920

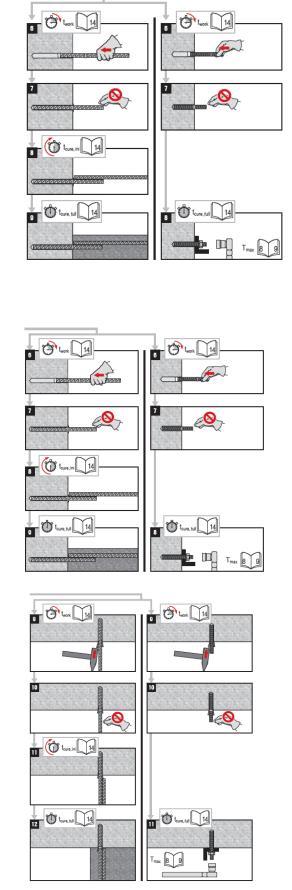

	HIT-V	HIS-N	Rebar	HIT-RB	HIT-SZ	HIT-DL	TE-YRT
d₀ [mm]		d [mm]		[mm]	[mm]		[mm]
10	8	-	-	10	-	-	
12	10	-	8	12	12	12	
14 16	12	8	10 12	14 16	14 16	14 16	
10	- 16	10	12	10	16	16	18
20	-	-	16	20	20	20	20
22	20	12	18	22	22	20	22
25	-	-	20	25	25	25	25
28	24	16	22	28	28	25	28
30	27	-	-	30	30	25	30
32	-	20	24/25	32	32	32	32
35	30	-	26/28	35	35	32	35
37	-	-	30	37	37	32	
40	-	-	32	40	40	32	
HIT-DL: h _{ef} > 2	нт-оL: h _{ef} > 250 mm нт-яв. h _{ef} > 20 x d						

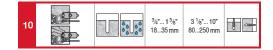

Hilli VC	HIT-RE-M Art. No. 337111	HDM 330 / 500 HDE 500-A18	HIT-OHW Art. No. 387550
	h _{er}	Ń	3
d₀ [mm] 1032 3540	[mm] 601500 1001920	Art. No. 381215	≥ 6 bar/90 psi ≥ 140 m³/h

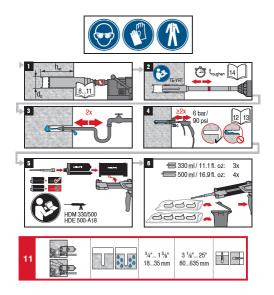

Rebar - h _{ef} ≥ 20d							
Ş 🖗 🕨							
	122220222	h _{er}					
HDM, HDE,	≤ US #5	12 1/2 37 1/2 [inch]	02.05 104.05	41 °F 104 °F			
HIT-P 8000D	≤ EU 16mm	320 960 [mm]	-5 °C 40 °C				
111-1 00000	≤ CAN 15M	320 960 [mm]	-5 0 40 0	5 0 40 0			
HDE.	≤ US #7	17 1/252 1/2 [inch]	00.05 101.05	41 °F 104 °F 5 °C 40 °C			
HIT-P 8000D	≤ EU 20mm	400 1200 [mm]					
111-1 00000	≤ CAN 20M	390 1170 [mm]	-50400				
	≤ US #10	25 75 [inch]	23 °F 104 °F	44.05 404.05			
HIT-P 8000D	≤ EU 32mm	640 1920 [mm]	-5 °C 40 °C	41 °F 104 °F			
	≤ CAN 30M	598 1794 [mm]	-5 0 40 0	5 0 40 0			

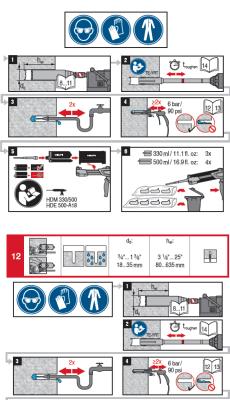

e____

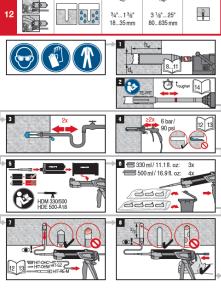

	h _{ef}		
≤ US #5	12 1/2 37 1/2 [inch]	00.05 404.05	
≤ EU 16mm	320 960 [mm]		
≤ CAN 15M	320 960 [mm]	0 0 40 0	0 0 40 0
≤ US #7	17 1/2 39 3/8 [inch]	00.05 404.05	44.05 404.05
≤ EU 20mm	400 1000 [mm]		
≤ CAN 20M	390 1000 [mm]	-50400	50400
	≤ US #5 ≤ EU 16mm ≤ CAN 15M ≤ US #7 ≤ EU 20mm	≤ US #5 12 ½ 37 ½ [inch] ≤ EU 10mm 320 960 [mm] ≤ CAN 15M 320 960 [mm] ≤ US #7 17 ½ 39 ¾ [inch] ≤ EU 20mm 400 1000 [mm]	≤ US #5 12 ½ 37 ½ [inch] ≤ EU 86mm 320 960 [nm] 5° C 40° C ≤ CAN 15M 320 960 [nm] 5° C 40° C ≤ US #7 17 ½ 39 % [inch] 23 ° F 104 ° F ≤ US #7 17 ½ 39 % [inch] 5° C 40° C ≤ US #7 17 ½ 39 % [inch] 5° F 104 ° F ≤ US 00mm 400 1000 [nm] 5° F 104 ° F

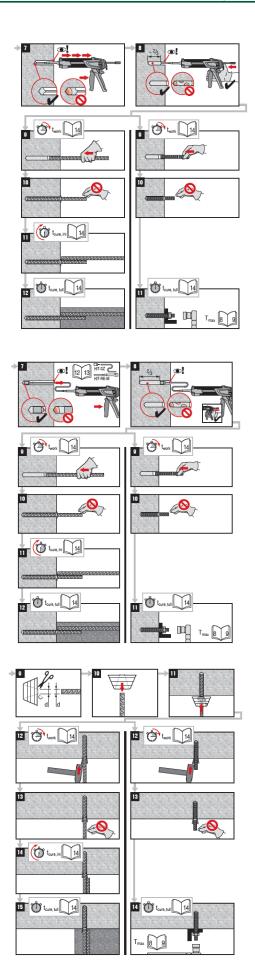


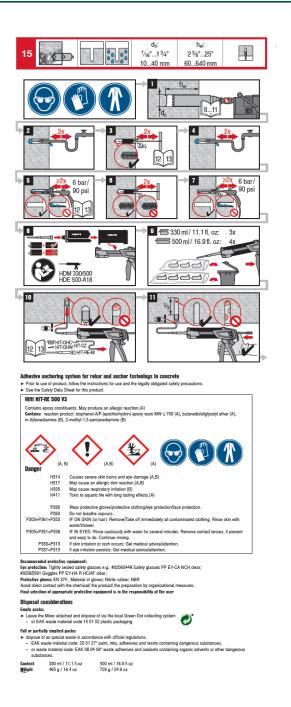


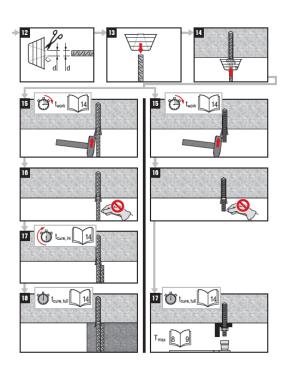












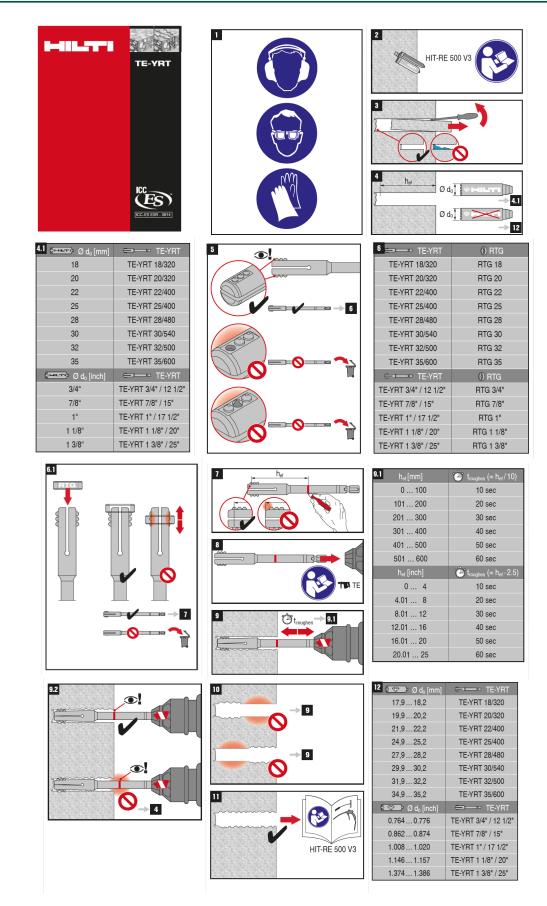
80

nty: Refer to standard Hilti terms and conditions of sale for warranty informal

Failure to observe these installation instructions, use of non-Hilti anchors, poor or questionable concrete conditions, or unique applications may affect the reliability or performance of the fasterings.

Product Information

- voruex timuffmatton
 Aways keep this induction for use is with the product.
 Ensure that the induction for use is with the product when it is given to other persons.
 Sately that Satest: Review the DD before use.
 Check expirate facts: See expirate data import on toplack manifold (month/ser). Do not use expired product.
 Feel pack temperature darge sage: 5° C is 40° C / 41 °F: to 104 °F.
 Cenditiss for transpert and starges: Keep in a cod, dy and data place between +5° C to 25 °C /
 41 °F to 77 °F.
 Fe any application not covered by this dorument / here.
- 41 F to // F. For any application not covered by this document/ beyond values specified, please contact Hiti.
 Partly used feil packs must be used up within 4 weeks. Leave the mixer attached on the foil pack manifold and store under the recommended storage conditions. If reused, attach a new mixer and discard the initial quantity of anchor attachmine. under the recom adhesive.


\mathbb{A} WARNING

- A Improver handling may cause mortar splashes. Eye contact with mortar may cause irreversible eye damage! A Navya wear lightly sealed safety glasses, glows and protective clothes before handling the motar! Never start dispensing without a mixer properly screwed on. Whon using an extension hose). Bittoh a new interferit

- the extension hose).

 Altach a new miser prior to dispensing a new loi pack (sinug fi).

 Calification lever remove the miser while the foll pack system is under pressure. Press the release builton of the disperser to avoid most rapisation of the disperser to avoid most rapid to avoid the disperse to avo
- 🛦 En
- sure that borcholes are filled from the back of the borcholes without forming air voids If necessary, use the accessories / extensions to reach the back of the borehole.
- In investigative processing relations in the investigation of the second sec

ICC-ES Evaluation Report

ESR-3814 LABC and LARC Supplement

Reissued January 2023 This report is subject to renewal January 2025.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-RE 500 V3 ADHESIVE ANCHORS AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System for cracked and uncracked concrete, described in ICC-ES evaluation report <u>ESR-3814</u>, has also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:

- 2020 City of Los Angeles Building Code (LABC)
- 2020 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The Hilti HIT-RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System for cracked and uncracked concrete, described in Sections 2.0 through 7.0 of the evaluation report <u>ESR-3814</u>, complies with LABC Chapter 19, and LARC, and is subject to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The Hilti HIT RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report ESR-3814.
- The design, installation, conditions of use and labeling of the Hilti HIT-RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are in accordance with the 2018 *International Building Code*[®] (IBC) provisions noted in the evaluation report <u>ESR-3814</u>.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.
- The allowable and strength design values listed in the evaluation report and tables are for the connection of the adhesive anchors and post installed reinforcing bars to the concrete. The connection between the adhesive anchors or post installed reinforcing bars and the connected members shall be checked for capacity (which may govern).
- For use in wall anchorage assemblies to flexible diaphragm, anchors shall be designed per the requirements of City of Los Angeles Information Bulletin P/BC 2020-071.

This supplement expires concurrently with the evaluation report, reissued January 2023.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

ICC-ES Evaluation Report

ESR-3814 FBC Supplement

Reissued January 2023 This report is subject to renewal January 2025.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council[®]

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-RE 500 V3 ADHESIVE ANCHORS AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT-RE 500 V3 Adhesive Anchors and Post-Installed Reinforcing Bar System in Concrete, described in ICC-ES evaluation report ESR-3814, has also been evaluated for compliance with the codes noted below.

Applicable code editions:

- 2020 Florida Building Code—Building
- 2020 Florida Building Code—Residential

2.0 CONCLUSIONS

The Hilti HIT-RE 500 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System, described in Sections 2.0 through 7.0 of ICC-ES evaluation report ESR-3814, comply with the *Florida Building Code—Building* and the *Florida Building Code—Residential*, provided the design requirements are determined in accordance with the *Florida Building Code—Building* or the *Florida Building Code—Residential*, as applicable. The installation requirements of the *Florida Building Code—Building Code—Residential*, as applicable.

Use of the Hilti HIT-RE 500 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the *Florida Building Code—Building* and the *Florida Building Code—Building* and the following condition.

a) For anchorage of wood members, the connection subject to uplift, must be designed for no less than 700 pounds (3114 N).

For products falling under Florida Rule 61G20-3, verification that the report holder's quality-assurance program is audited by a quality-assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report, reissued January 2023.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

